Annular dynamical disorder of the rare earth ions in a La2Zr2O7 pyrochlore via single crystal synchrotron X-ray diffraction

Abstract The reciprocal lattices of a range of rare earth titanate and zirconate pyrochlores have recently been shown to exhibit an extremely characteristic diffuse intensity distribution identical in form to that characteristic of β-cristobalite implying the existence of β-cristobalite-like orientational disorder of essentially rigid, (O2)(R3+)4 tetrahedra within the pyrochlore structure type. A single crystal X-ray diffraction study of La2Zr2O7 has been carried out utilizing synchrotron radiation in order to investigate this proposed orientational disorder and to determine an unknown oxygen atom fractional co-ordinate. An annular distribution of residual electron density is found around the average La ion positions in {111} planes perpendicular to the local O2–La–O2 directions and interpreted as implying that the La ions never in fact occupy the average 16d positions but rather are dynamically disordered around an annulus perpendicular to that direction in an exactly analogous manner to that which occurs in β-cristobalite.

[1]  V. Heine,et al.  Short-Range Disorder and Long-Range Order: Implications of the “Rigid Unit Mode” Picture , 2002 .

[2]  D. Keen Reverse Monte Carlo Refinement of Disordered Silica Phases , 2002 .

[3]  R. Withers,et al.  Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation , 2000 .

[4]  R. Withers,et al.  Structure and Crystal Chemistry as a Function of Composition across the Wide Range Nonstoichiometric (1−ε)ZrO2·εSmO1.5, 0.38 , 1999 .

[5]  R. Withers,et al.  The determination of an unknown oxygen atom position in rare-earth zirconate pyrochlores by a 111 systematic-row convergent-beam electron diffraction technique , 1999 .

[6]  R. Withers,et al.  Structured Diffuse Scattering as an Indicator of Inherent Cristobalite-like Displacive Flexibility in the Rare Earth Zirconate Pyrochlore LaδZr1−δO2−δ/2, 0.49 , 1999 .

[7]  R. Withers,et al.  Cristobalite-Related Oxide Structures , 1998 .

[8]  M. Barsoum,et al.  STRUCTURE AND CRYSTAL CHEMISTRY OF Ti3SiC2 , 1998 .

[9]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[10]  A. Sleight,et al.  Chapter 107 Rare earth pyrochlores , 1993 .

[11]  Dove,et al.  Low-frequency floppy modes in beta -cristobalite. , 1993, Physical review letters.

[12]  S. Sasaki X ray absorption coefficients of the elements (Li to Bi, U , 1990 .

[13]  R. Withers,et al.  The structure and microstructure of α-cristobalite and its relationship to β-cristobalite , 1989 .

[14]  R. Withers,et al.  An optical transform and Monte Carlo study of the disorder in β-cristobalite SiO2 , 1989 .

[15]  S. Sasaki,et al.  NUMERICAL TABLES OF ANOMALOUS SCATTERING FACTORS CALCULATED BY THE CROMER AND LIBERMAN'S METHOD , 1989 .

[16]  R. Withers,et al.  An electron diffraction and lattice-dynamical study of the diffuse scattering in β-cristobalite, SiO2 , 1988 .

[17]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[18]  C. Chien,et al.  Mössbauer effect studies of europium pyrochlores , 1978 .

[19]  T. Noguchi,et al.  Digital pyrometry in a solar furnace , 1976 .

[20]  E. Bauminger,et al.  Goldanskii effect in quadrupole Mössbauer spectra of the 89 keV gamma ray of 156Gd , 1974 .

[21]  H. Müller-Buschbaum,et al.  Ein Beitrag zur Pyrochlorstruktur an La2Zr2O7 , 1970 .

[22]  T. Noguchi,et al.  Liquidus Curve Measurements in the ZrO2-MgO System with the Solar Furnace , 1968 .

[23]  M. Tokonami Atomic scattering factor for O2 , 1965 .