Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment

[1]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[2]  E. Gaidos,et al.  Spatial structure of the microbial community in sandy carbonate sediment , 2007 .

[3]  N. Marbà,et al.  Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes , 2007 .

[4]  N. Marbà,et al.  The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments , 2007 .

[5]  N. Marbà,et al.  Iron Additions Reduce Sulfide Intrusion and Reverse Seagrass (Posidonia oceanica) Decline in Carbonate Sediments , 2007, Ecosystems.

[6]  N. Marbà,et al.  Seagrass Beds and Coastal Biogeochemistry , 2007 .

[7]  D. Alongi,et al.  Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment , 2006 .

[8]  F. Rodríguez-Valera,et al.  Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. , 2006, FEMS microbiology ecology.

[9]  B. Engelen,et al.  Specific Bacterial, Archaeal, and Eukaryotic Communities in Tidal-Flat Sediments along a Vertical Profile of Several Meters , 2006, Applied and Environmental Microbiology.

[10]  G. Muyzer,et al.  Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments , 1995, Archives of Microbiology.

[11]  Robert J. Orth,et al.  Seagrasses: biology, ecology and conservation , 2006 .

[12]  K. Kilminster,et al.  Microbial colonization in the seagrass Posidonia spp. roots , 2005 .

[13]  E. Kristensen,et al.  Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea) , 2005 .

[14]  U. Witte,et al.  The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. , 2005, Environmental microbiology.

[15]  Erik Kristensen,et al.  Interactions Between Macro‐ and Microorganisms in Marine Sediments , 2005 .

[16]  Roberto Danovaro,et al.  Response of Benthic Protozoa and Thraustochytrid Protists to Fish Farm Impact in Seagrass (Posidonia oceanica) and Soft-Bottom Sediments , 2005, Microbial Ecology.

[17]  N. Marbà,et al.  Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments , 2003 .

[18]  L. Tranvik,et al.  Depth distribution of active bacteria and bacterial activity in lake sediment. , 2003, FEMS microbiology ecology.

[19]  C. Reimers,et al.  Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. , 2003, FEMS microbiology ecology.

[20]  D. Hahn,et al.  Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season , 2003 .

[21]  R. Amann,et al.  Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach , 2002 .

[22]  R. Danovaro,et al.  Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability , 2002 .

[23]  G. M. Luna,et al.  Large Fraction of Dead and Inactive Bacteria in Coastal Marine Sediments: Comparison of Protocols for Determination and Ecological Significance , 2002, Applied and Environmental Microbiology.

[24]  M. Kühl,et al.  Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. , 2002, FEMS microbiology ecology.

[25]  D. Hahn,et al.  Interactions among Plant Species and Microorganisms in Salt Marsh Sediments , 2002, Applied and Environmental Microbiology.

[26]  B. V. Mooy,et al.  Seasonal variation in sedimentary amino acids and the association of organic matter with mineral surfaces in a sandy eelgrass meadow , 2002 .

[27]  V. Torsvik,et al.  Microenvironments and microbial community structure in sediments. , 2002, Environmental microbiology.

[28]  R. Danovaro,et al.  Small-Scale Distribution of Bacteria, Enzymatic Activities, and Organic Matter in Coastal Sediments , 2001, Microbial Ecology.

[29]  A. B. Patel,et al.  Extracellular Proteolytic Activity in the Surface Sediment of a Eutrophic Inlet , 2001 .

[30]  E. Kristensen,et al.  Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3−, and SO42−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation , 2001 .

[31]  R Amann,et al.  Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. , 2000, FEMS microbiology reviews.

[32]  R. Amann,et al.  Community Structure, Cellular rRNA Content, and Activity of Sulfate-Reducing Bacteria in Marine Arctic Sediments , 2000, Applied and Environmental Microbiology.

[33]  H. Cypionka,et al.  Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. , 2000, Environmental microbiology.

[34]  J. Antón,et al.  Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments , 2000, Applied and Environmental Microbiology.

[35]  R. Danovaro,et al.  Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the Western Mediterranean , 2000 .

[36]  K. Schleifer,et al.  The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. , 1999, Systematic and applied microbiology.

[37]  R. Amann,et al.  High Bacterial Diversity in Permanently Cold Marine Sediments , 1999, Applied and Environmental Microbiology.

[38]  R. Amann,et al.  The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. , 1999, Systematic and applied microbiology.

[39]  J. Rooney-Varga,et al.  Molecular Phylogenetic and Biogeochemical Studies of Sulfate-Reducing Bacteria in the Rhizosphere ofSpartina alterniflora , 1999, Applied and Environmental Microbiology.

[40]  Francois R. Lamy,et al.  Biphasic Extracellular Proteolytic Enzyme Activity in Benthic Water and Sediment in the Northwestern Mediterranean Sea , 1999, Applied and Environmental Microbiology.

[41]  D. Stahl,et al.  Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. , 1999, Environmental microbiology.

[42]  N. Marbà,et al.  Root production and belowground seagrass biomass , 1998 .

[43]  R. Amann,et al.  Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization , 1998, Applied and Environmental Microbiology.

[44]  J. Deming,et al.  Constancy of bacterial abundance in surficial marine sediments , 1998 .

[45]  U. Szewzyk,et al.  Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides , 1998 .

[46]  D. Hahn,et al.  Analysis of bacterial community structure in bulk soil by in situ hybridization , 1997, Archives of Microbiology.

[47]  R Amann,et al.  Phylogenetic analysis and in situ identification of bacteria in activated sludge , 1997, Applied and environmental microbiology.

[48]  R Amann,et al.  Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. , 1996, Microbiology.

[49]  Roberto Danovaro,et al.  Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean , 1996 .

[50]  K. Goodman,et al.  Deep bacterial biosphere in Pacific Ocean sediments , 1994, Nature.

[51]  R. Danovaro,et al.  Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin, composition and fate of the sediment organic matter , 1994 .

[52]  D. Canfield,et al.  Pathways of organic carbon oxidation in three continental margin sediments. , 1993, Marine geology.

[53]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[54]  B. Jørgensen,et al.  Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method , 1989 .

[55]  J. Sørensen,et al.  Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry , 1987 .

[56]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[57]  Bo Barker J⊘rgensen A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments: III. Estimation from chemical and bacteriological field data , 1978 .

[58]  Joel D. Cline,et al.  SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1 , 1969 .