Monitoring the operation of an oil/water separator using impedance tomography

The development and application of an industrial deoiling hydrocyclone equipped with electrical resistance tomographic instrumentation is described. The use of electrical sensors for continuous monitoring of separator operation is demonstrated. Results show that electrical resistance tomography (ERT) is an effective tool for optimising start-up and operation of the separator. Subtleties of flow within the hydrocyclone can also be sensed, highlighting its potential for use as a validation tool for computational fluid dynamics and design models.

[1]  Yaojun Lu,et al.  Numerical simulation of strongly swirling turbulent flows in a liquid-liquid hydrocyclone using the Reynolds stress transport equation model , 2000 .

[2]  Yves Aurelle,et al.  Efficiency estimation of liquid‐liquid Hydrocyclones using trajectory analysis , 1995 .

[3]  Trevor A. York Status of electrical tomography in industrial applications , 2001, J. Electronic Imaging.

[4]  I. C. Smyth,et al.  Development and performance of oil-water hydrocyclone separators: a review , 1998 .

[5]  S. M. Stroder,et al.  Hydrocyclone Separation: A Preferred Means of Water Separation and Handling in Oilfield Production , 1994 .

[6]  David A. Flanigan,et al.  Use of Low-Shear Pumps and Hydrocyclones for Improved Performance in the Cleanup of Low-Pressure Water , 1992 .

[7]  L. R. Castilho,et al.  A simple procedure for design and performance prediction of Bradley and Rietema hydrocyclones , 2000 .

[8]  周力行,et al.  Numerical Simulation of Fluid Flow and Oil-Water Separation in Hydrocyclones , 2003 .

[9]  J. Listewnik Application of a hydrocyclone for 3 phase separation duties in a ship's cooling water system , 2000 .

[10]  Wim M. G. T. van den Broek,et al.  Comparison of Plate Separator, Centrifuge and Hydrocyclone , 1998 .

[11]  M. T. Thew,et al.  The Effect of Oil and Gas Content on the Controllability and Separation in a De-Oiling Hydrocyclone , 2003 .

[12]  Ranganathan Kumar,et al.  Drop size measurement in a two-phase swirling flow using image processing techniques , 1994 .

[13]  Tomasz Dyakowski,et al.  Air core imaging in cyclonic separators: implications for separator design and modelling , 1995 .

[14]  J. C. Cullivan,et al.  Understanding the hydrocyclone separator through computational fluid dynamics , 2003 .

[15]  J. H. Hargreaves,et al.  Computational fluid dynamics applied to the analysis of deoiling hydrocyclone performance , 1990 .

[16]  Tomasz Dyakowski,et al.  The hydrodynamics of a hydrocyclone based on a three-dimensional multi-continuum model , 2000 .

[17]  S. L. Andrews,et al.  Oil-water separation using hydrocyclones: An experimental search for optimum dimensions , 1994 .

[18]  Robert West,et al.  Parametric modelling in industrial process tomography , 2000 .

[19]  H. U. Regehr Untersuchungen über die Entmischung disperser Stoffsysteme im Hydrozyklon , 1962 .

[20]  Ram S. Mohan,et al.  Oil/Water Separation in Liquid/Liquid Hydrocyclones (LLHC): Part 1 - Experimental Investigation , 2002 .

[21]  Xiaodong Jia,et al.  Industrial Monitoring of Hydrocyclone Operation using Electrical Resistance Tomography , 1999 .