The optimal projection approach to model reduction and the relationship between the methods of Wilson and Moore

First-order necessary conditions for optimal reduced-order modelling of linear time-invariant systems are derived in the form of a pair of modified Lyapunov equations coupled by an oblique projection that determines the optimal reduced-order model. This form of the necessary conditions considerably simplifies previous results of Wilson ([1]) and clearly reveals the suboptimality of the balancing method of Moore ([2]).

[1]  D. Wilson Optimum solution of model-reduction problem , 1970 .

[2]  D. Hyland,et al.  Optimality conditions for fixed-order dynamic compensation of flexible spacecraft with uncertain parameters , 1982 .

[3]  Craig S. Sims,et al.  Reduced-Order Modeling and Filtering , 1982 .

[4]  D. C. Hyland,et al.  COMPARISON OF VARIOUS CONTROLLER-REDUCTION METHODS: SUBOPTIMAL VERSUS OPTIMAL PROJECTION , 1984 .

[5]  D. Wilson,et al.  A new algorithm for optimal reduction of multivariable systems , 1980 .

[6]  D. Hyland,et al.  The optimal projection approach to fixed-order compensation - Numerical methods and illustrative results , 1983 .

[7]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[8]  H. Nicholson,et al.  On the structure of balanced and other principal representations of SISO systems , 1983 .

[9]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[10]  Dennis Bernstein,et al.  Explicit optimality conditions for fixed-order dynamic compensation , 1983, The 22nd IEEE Conference on Decision and Control.

[11]  Edmond A. Jonckheere,et al.  A new set of invariants for linear systems--Application to reduced order compensator design , 1983 .

[12]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[13]  Leonard M. Silverman,et al.  Linear time-variable systems: Balancing and model reduction , 1983 .

[14]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[15]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[16]  L. Silverman,et al.  Model reduction via balanced state space representations , 1982 .

[17]  Thomas Kailath,et al.  On generalized balanced realizations , 1980 .

[18]  Michael Athans,et al.  The Matrix Minimum Principle , 1967, Inf. Control..

[19]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[20]  Dennis S. Bernstein,et al.  Numerical solution of the optimal model reduction equations , 1984 .

[21]  M. Aoki Control of large-scale dynamic systems by aggregation , 1968 .

[22]  D. Wilson,et al.  Model reduction for multivariable systems , 1974 .