A comparison of nonlocal continuum and discrete dislocation plasticity predictions

Discrete dislocation simulations of two boundary value problems are used as numerical experiments to explore the extent to which the nonlocal crystal plasticity theory of Gurtin (J. Mech. Phys. Solids 50 (2002) 5) can reproduce their predictions. In one problem simple shear of a constrained strip is analyzed, while the other problem concerns a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear. In the constrained layer problem, boundary layers develop that give rise to size e5ects. In the composite problem, the discrete dislocation solutions exhibit composite hardening that depends on the reinforcement morphology, a size dependence of the overall stress–strain response for some morphologies, and a strong Bauschinger e5ect on unloading. In neither problem are the qualitative features of the discrete dislocation results represented by conventional continuum crystal plasticity. The nonlocal plasticity calculations here reproduce the behavior seen in the discrete dislocation simulations in remarkable detail. ? 2003 Elsevier Science Ltd. All rights reserved.

[1]  Norman A. Fleck,et al.  Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity , 2001 .

[2]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[3]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[4]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[5]  C. F. Niordson,et al.  Non‐uniform plastic deformation of micron scale objects , 2003 .

[6]  P. Steinmann,et al.  Theory and numerics of a thermodynamically consistent framework for geometrically linear gradient plasticity , 2001 .

[7]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[8]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[9]  Chi Ming Chong Strain gradient plasticity in glassy polymers , 1998 .

[10]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[11]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[12]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[13]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[14]  E. V. D. Giessenc,et al.  Boundary layers in constrained plastic 'ow: comparison of nonlocal and discrete dislocation plasticity , 2001 .

[15]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[16]  van der Erik Giessen,et al.  COMPARISON OF DISCRETE DISLOCATION AND CONTINUUM PLASTICITY PREDICTIONS FOR A COMPOSITE MATERIAL , 1997 .

[17]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[18]  van der Erik Giessen,et al.  A discrete dislocation analysis of bending , 1999 .

[19]  M. Ashby,et al.  Dispersion hardening of copper single crystals , 1966 .

[20]  Noel P. O’Dowd,et al.  Gradient-dependent deformation of two-phase single crystals , 2000 .

[21]  H. Mughrabi,et al.  Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals , 1983 .

[22]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[23]  Laurent Stainier,et al.  A theory of subgrain dislocation structures , 2000 .

[24]  Norman A. Fleck,et al.  Strain gradient crystal plasticity: size-dependentdeformation of bicrystals , 1999 .

[25]  M. J. Luton,et al.  Dislocation/particle interactions in an oxide dispersion strengthened alloy , 1988 .

[26]  A. Needleman,et al.  Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions , 2001 .

[27]  William D. Nix,et al.  The Role of Indentation Depth on the Measured Hardness of Materials , 1993 .

[28]  G. Cooper Strengthening methods in crystals: Edited by A. Kelly and R. B. Nicholson Elsevier, Amsterdam, London, New York (1971) 627 pp, £12.50 , 1971 .

[29]  A. Acharya,et al.  Incompatibility and crystal plasticity , 1995 .

[30]  Bob Svendsen,et al.  Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations , 2002 .

[31]  van der Erik Giessen,et al.  A discrete dislocation analysis of residual stresses in a composite material , 1999 .

[32]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[33]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[34]  A. Needleman,et al.  Discrete dislocation simulations and size dependent hardening in single slip , 1998 .