Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement

[1]  F. Hernández-Olivares,et al.  Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers , 2014 .

[2]  G. Barluenga,et al.  Early age and hardened performance of cement pastes combining mineral additions , 2013 .

[3]  Qing-Fu Li,et al.  Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume , 2013 .

[4]  A. Aït‐Mokhtar,et al.  Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying , 2013 .

[5]  Geert De Schutter,et al.  Non-steady state chloride diffusion in concrete with different crack densities , 2013 .

[6]  Fernando A. Branco,et al.  Statistical analysis of the carbonation coefficient in open air concrete structures , 2012 .

[7]  Cengiz Duran Atiş,et al.  The durability properties of polypropylene fiber reinforced fly ash concrete , 2011 .

[8]  Gonzalo Barluenga,et al.  Fiber-matrix Interaction at Early Ages of Concrete With Short Fibers , 2010 .

[9]  Nicolas Roussel,et al.  Rheology of Fiber Reinforced Cementitious Materials: Classification and Prediction , 2010 .

[10]  Michael D. Lepech,et al.  Water permeability of engineered cementitious composites , 2009 .

[11]  Ahmed Loukili,et al.  A performance based approach for durability of concrete exposed to carbonation , 2009 .

[12]  S. Salih,et al.  Effect of Polypropylene Fibers on Properties of Mortar Containing Crushed Brick as Aggregate , 2008, Engineering and Technology Journal.

[13]  Gonzalo Barluenga,et al.  Cracking Control of Concretes Modified with Short AR-glass Fibers at Early Age. Experimental Results on Standard Concrete and SCC , 2007 .

[14]  K. Sisomphon,et al.  Carbonation rates of concretes containing high volume of pozzolanic materials , 2007 .

[15]  Jason H. Ideker,et al.  Alkali silica reactivity of agglomerated silica fume , 2007 .

[16]  Nemkumar Banthia,et al.  Influence of Polypropylene Fiber Geometry on Plastic Shrinkage Cracking in Concrete , 2006 .

[17]  M. C. Nataraja,et al.  Reproportioning of steel fibre reinforced concrete mixes and their impact resistance , 2005 .

[18]  Yang Xiao-jie Effect of Polypropylene Fiber on Dry-shrinkage Ratio of Cement Mortar , 2005 .

[19]  Erika Holt,et al.  Cracking risks associated with early age shrinkage , 2004 .

[20]  I. Marie,et al.  The use of USPV to anticipate failure in concrete under compression , 2003 .

[21]  Jong Herman Cahyadi,et al.  Effects of densified silica fume on microstructure and compressive strength of blended cement pastes , 2003 .

[22]  Michael D. A. Thomas,et al.  The effect of the silica content of silica fume on its ability to control alkali–silica reaction , 2003 .

[23]  R Uribe-Afif,et al.  Importance of using the natural pozzolans on concrete durability , 2002 .

[24]  M. Ward,et al.  Effect of silica fume and fly ash on heat of hydration of Portland cement , 2002 .

[25]  Andrew J. Boyd,et al.  Diseño de hormigón durable , 2001 .

[26]  S. Shah,et al.  Permeability of cracked concrete , 1999 .

[27]  H. Toutanji,et al.  Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete , 1998 .

[28]  Roger Duval,et al.  Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concretes , 1998 .

[29]  Surendra P. Shah,et al.  Permeability study of cracked concrete , 1997 .

[30]  Surendra P. Shah,et al.  Fiber-Reinforced Cement Composites , 1992 .