On the degree of the $L$-function associated with an exponential sum
暂无分享,去创建一个
[1] Jean-Pierre Serre,et al. Endomorphismes complètement continus des espaces de Banachp-adiques , 1962 .
[2] P. Deligne,et al. Groupes de monodromie en geometrie algebrique , 1972 .
[3] David Eisenbud,et al. Every algebraic set inn-space is the intersection ofn hypersurfaces , 1973 .
[4] Enrico Bombieri,et al. On exponential sums in finite fields, II , 1978 .
[5] A. Adolphson. On the Dwork trace formula. , 1984 .
[6] Steven Sperber,et al. Character sums in finite fields , 1984 .
[7] S. Sperber. On the L-functions associated with certain exponential sums , 1980 .
[8] Steven Sperber,et al. Exponential Sums on the Complement of a Hypersurface , 1980 .
[9] Bernard Dwork,et al. On the Rationality of the Zeta Function of an Algebraic Variety , 1960 .
[10] Bernard Dwork,et al. On the zeta function of a hypersurface , 1962 .
[11] Uwe Storch,et al. Bemerkung zu einem Satz von M. Kneser , 1972 .