Low-temperature brazing of titanium by the application of a Zr–Ti–Ni–Cu–Bebulk metallic glass (BMG) alloy as a filler

Abstract Titanium (Ti) was successfully brazed at low temperatures below 800 °C by employing a Zr41.2Ti13.8Ni10.0Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) alloy as a filler. Through the use of this alloy filler, the detrimental segregation of Zr–Cu–Ni filler elements was completely eliminated by heating to well below 800 °C, so the resultant joint was quite homogeneous with a coarse acicular structure. The disappearance of the Zr–Cu–Ni segregated region was rate-controlled by the diffusion of the filler elements in the Ti base metal. Remarkably, the mechanical property and corrosion resistance of the homogeneous joint brazed at 800 °C for 10 min were mostly comparable to those of bulk Ti.

[1]  David M. Jacobson,et al.  Principles of Soldering and Brazing , 1992 .

[2]  A. Rabinkin,et al.  State of the art of titanium-based brazing filler metals , 2003 .

[3]  T. V. Melnichenko,et al.  Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system , 2008 .

[4]  T. Takemoto,et al.  Intermetallic compounds formed during brazing of titanium with aluminium filler metals , 1988 .

[5]  Yit‐Tsong Chen,et al.  Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals , 2008 .

[6]  A. Suzumura,et al.  BRAZING OF TITANIUM USING LOW-MELTING-POINT TI-BASED FILLER METALS , 1990 .

[7]  G. J. Dienes,et al.  An Introduction to Solid State Diffusion , 1988 .

[8]  W. Johnson,et al.  A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 , 1993 .

[9]  C. Koo,et al.  Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal , 2006 .

[10]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[11]  A. Rabinkin,et al.  Brazing of titanium-based alloys with amorphous 25wt.%Ti-25wt.%Zr-50wt.%Cu filler metal , 1994 .

[12]  A. Rabinkin,et al.  Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti-25Zr-50Cu brazing filler metal , 1996 .

[13]  C. Chang,et al.  Microstructural evolution of infrared brazed Ti-15-3 alloy using Ti–15Cu–15Ni and Ti–15Cu–25Ni fillers , 2006 .

[14]  R. Shiue,et al.  The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys , 2004 .

[15]  S. Park,et al.  Sheet fabrication of bulk amorphous alloys by twin-roll strip casting , 2005 .

[16]  W. L. Johnson,et al.  A highly processable metallic glass: Zr[sub 41. 2]Ti[sub 13. 8]Cu[sub 12. 5]Ni[sub 10. 0]Be[sub 22. 5] , 1993 .

[17]  S. Hong,et al.  Microstructure and bonding mechanism of Al/Ti bonded joint using Al–10Si–1Mg filler metal , 2003 .

[18]  Jaegab Lee,et al.  Strong bonding of titanium to copper through the elimination of the brittle interfacial intermetallics , 2008 .

[19]  C. H. Chen,et al.  Low-melting-point titanium-base brazing alloys—part 1: Characteristics of two-, three-, and four-component filler metals , 1997 .