Compliance profiles derived from a three-dimensional finite-element model of the basilar membrane.

A finite-element analysis is used to explore the impact of elastic material properties, boundary conditions, and geometry, including coiling, on the spatial characteristics of the compliance of the unloaded basilar membrane (BM). It is assumed that the arcuate zone is isotropic and the pectinate zone orthotropic, and that the radial component of the effective Young's modulus in the pectinate zone decreases exponentially with distance from base to apex. The results concur with tonotopic characteristics of compliance and neural data. Moreover, whereas the maximum compliance in a radial profile is located close to the boundary between the two zones in the basal region, it shifts to the midpoint of the pectinate zone for the apical BM; the width of the profile also expands. This shift begins near the 1 kHz characteristic place for guinea pig and the 2.4 kHz place for gerbil. Shift and expansion are not observed for linear rather than exponential decrease of the radial component of Young's modulus. This spatial change of the compliance profile leads to the prediction that mechanical excitation in the apical region of the organ of Corti is different to that in the basal region.

[1]  N. Cooper,et al.  Vibration of beads placed on the basilar membrane in the basal turn of the cochlea. , 1999, The Journal of the Acoustical Society of America.

[2]  M. Liberman The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. , 1982, The Journal of the Acoustical Society of America.

[3]  M. Holley,et al.  Mechanics of microtubule bundles in pillar cells from the inner ear. , 1997, Biophysical journal.

[4]  David C Mountain,et al.  Basilar membrane tension calculations for the gerbil cochlea. , 2007, The Journal of the Acoustical Society of America.

[5]  P Dallos,et al.  Morphology of the unfixed cochlea , 1998, Hearing Research.

[6]  Vinod Subramaniam,et al.  Micromechanical bending of single collagen fibrils using atomic force microscopy. , 2007, Journal of biomedical materials research. Part A.

[7]  C. Richter,et al.  The hemicochlea preparation of the guinea pig and other mammalian cochleae , 2007, Journal of Neuroscience Methods.

[8]  Thomas Zahnert,et al.  The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data , 2008, Hearing Research.

[9]  Sunil Puria,et al.  Intracochlear pressure and derived quantities from a three-dimensional model. , 2007, The Journal of the Acoustical Society of America.

[10]  Salvatore Iurato,et al.  Functional Implications of the Nature and Submicroscopic Structure of the Tectorial and Basilar Membranes , 1962 .

[11]  Mathematical modeling of the radial profile of basilar membrane vibrations in the inner ear. , 2004, The Journal of the Acoustical Society of America.

[12]  B. M. Johnstone,et al.  State of stress within the basilar membrane: a re-evaluation of the membrane misnomer , 1983, Hearing Research.

[13]  C. Shera,et al.  Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. , 2001, The Journal of the Acoustical Society of America.

[14]  Samuel W. Key,et al.  A variational principle for incompressible and nearly-incompressible anisotropic elasticity , 1969 .

[15]  R S Chadwick,et al.  Cochlea's graded curvature effect on low frequency waves. , 2006, Physical review letters.

[16]  D. D. Greenwood Comparing octaves, frequency ranges, and cochlear-map curvature across species , 1996, Hearing Research.

[17]  Laura Schweitzer,et al.  Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea , 1996, Hearing Research.

[18]  F. Mammano,et al.  Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.

[19]  W. S. Rhode,et al.  Study of mechanical motions in the basal region of the chinchilla cochlea. , 2000, The Journal of the Acoustical Society of America.

[20]  Charles R. Steele Toward Three-Dimensional Analysis of Cochlear Structure , 1999, ORL.

[21]  Hongxue Cai,et al.  Effects of coiling on the micromechanics of the mammalian cochlea , 2005, Journal of The Royal Society Interface.

[22]  Marcus Müller The cochlear place-frequency map of the adult and developing mongolian gerbil , 1996, Hearing Research.

[23]  William S. Rhode,et al.  Nonlinear mechanics at the apex of the guinea-pig cochlea , 1995, Hearing Research.

[24]  W. S. Rhode,et al.  Basilar membrane mechanics in the 6-9 kHz region of sensitive chinchilla cochleae. , 2007, The Journal of the Acoustical Society of America.

[25]  Mario A. Ruggero,et al.  Phase-Locked Responses to Tones of Chinchilla Auditory Nerve Fibers: Implications for Apical Cochlear Mechanics , 2010, Journal of the Association for Research in Otolaryngology.

[26]  J F Ashmore,et al.  Finite element micromechanical modeling of the cochlea in three dimensions. , 1996, The Journal of the Acoustical Society of America.

[27]  A. Nuttall,et al.  Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. , 1996, The Journal of the Acoustical Society of America.

[28]  M. Ruggero,et al.  Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. , 1998, Science.

[29]  M. Sondhi,et al.  Cochlear macromechanics: time domain solutions. , 1979, The Journal of the Acoustical Society of America.

[30]  W Hemmert,et al.  Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Sunil Puria,et al.  A MULTISCALE MODEL OF THE ORGAN OF CORTI. , 2009, Journal of mechanics of materials and structures.

[32]  W. S. Rhode,et al.  Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts , 1992, Hearing Research.

[33]  W. G. Matthews,et al.  Determination of the elastic modulus of native collagen fibrils via radial indentation , 2006 .

[34]  Christopher A Shera,et al.  Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea. , 2007, The Journal of the Acoustical Society of America.

[35]  O. Henson,et al.  Tension fibroblasts and the connective tissue matrix of the spiral ligament , 1988, Hearing Research.

[36]  Shuangqin Liu,et al.  Orthotropic material properties of the gerbil basilar membrane. , 2007, The Journal of the Acoustical Society of America.

[37]  L M Cabezudo,et al.  The ultrastructure of the basilar membrane in the cat. , 1978, Acta oto-laryngologica.

[38]  A. Palmer,et al.  Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells , 1986, Hearing Research.

[39]  James Lighthill,et al.  Energy flow in the cochlea , 1981, Journal of Fluid Mechanics.

[40]  Charles R. Steele,et al.  A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method , 2002, Hearing Research.

[41]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[42]  Longitudinal Coupling in the Basilar Membrane , 2001, Journal of the Association for Research in Otolaryngology.

[43]  Richard S. Chadwick,et al.  Effects of Geometry on Fluid Loading in a Coiled Cochlea , 2000, SIAM J. Appl. Math..

[44]  Philip X Joris,et al.  Panoramic Measurements of the Apex of the Cochlea , 2006, The Journal of Neuroscience.

[45]  Anthony W. Gummer,et al.  Direct measurement of basilar membrane stiffness in the guinea pig , 1981 .

[46]  L. Voldřich,et al.  Mechanical Properties of Basilar Membrane , 1978 .

[47]  J. Nadol,et al.  Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers , 2001, The Journal of comparative neurology.

[48]  Tomonori Takasaka,et al.  Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system , 1996, Hearing Research.

[49]  Claus-Peter Richter,et al.  Stiffness of the gerbil basilar membrane: radial and longitudinal variations. , 2004, Journal of neurophysiology.

[50]  T. Ren Longitudinal pattern of basilar membrane vibration in the sensitive cochlea , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Anthony W. Gummer,et al.  Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea , 2000, Hearing Research.

[52]  Manfred Kössl,et al.  A Targeted Deletion in α-Tectorin Reveals that the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback , 2000, Neuron.

[53]  A. Gummer,et al.  Impedance analysis of the organ of corti with magnetically actuated probes. , 2004, Biophysical journal.

[54]  D. Mountain,et al.  Mapping the cochlear partition's stiffness to its cellular architecture. , 1994, The Journal of the Acoustical Society of America.

[55]  D. Mountain,et al.  In vivo measurement of basilar membrane stiffness. , 1991, The Journal of the Acoustical Society of America.

[56]  Active Cochlear Feedback: Required Structure And Response Phase , 1990 .

[57]  William F. Sewell,et al.  The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats , 1984, Hearing Research.

[58]  I. Russell,et al.  The spatial and temporal representation of a tone on the guinea pig basilar membrane. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Ombeline de La Rochefoucauld,et al.  The role of organ of Corti mass in passive cochlear tuning. , 2007, Biophysical journal.

[60]  Ewa Skrodzka Mechanical passive and active models of the human basilar membrane , 2005 .

[61]  D. Mountain,et al.  Mechanical Response of the Basilar Membrane to Lateral Micromanipulation , 2009 .

[62]  Anthony W. Gummer,et al.  Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Allen,et al.  A parametric study of cochlear input impedance. , 1991, The Journal of the Acoustical Society of America.

[64]  Charles R. Steele,et al.  Basilar Membrane Properties and Cochlear Response , 1983 .

[65]  David C Mountain,et al.  Measurements of the stiffness map challenge a basic tenet of cochlear theories , 1998, Hearing Research.

[66]  D. Lim,et al.  Cochlear anatomy related to cochlear micromechanics. A review. , 1980, The Journal of the Acoustical Society of America.

[67]  M. Liberman,et al.  Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections , 1997 .

[68]  P Dallos,et al.  Low-frequency auditory characteristics: Species dependence. , 1970, The Journal of the Acoustical Society of America.

[69]  C E Miller Structural implications of basilar membrane compliance measurements. , 1985, The Journal of the Acoustical Society of America.

[70]  Mario A Ruggero,et al.  Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. , 2008, Journal of neurophysiology.

[71]  C. Steele,et al.  Effect of coiling in a cochlear model. , 1985, The Journal of the Acoustical Society of America.

[72]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[73]  Daphne Manoussaki,et al.  The influence of cochlear shape on low-frequency hearing , 2008, Proceedings of the National Academy of Sciences.

[74]  D. Mountain,et al.  THE HELICOTREMA: MEASUREMENTS AND MODELS , 2003 .

[75]  C H Loh,et al.  Multiple scale analysis of the spirally coiled cochlea. , 1983, The Journal of the Acoustical Society of America.

[76]  M. Ruggero,et al.  Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  W. Wong,et al.  A model cochlear partition involving longitudinal elasticity. , 2002, The Journal of the Acoustical Society of America.

[78]  O. Henson,et al.  The presence and arrangement of type II collagen in the basilar membrane , 2002, Hearing Research.

[79]  D. Brass A macro-mechanical model of the guinea pig cochlea with realistic parameters. , 2000, The Journal of the Acoustical Society of America.

[80]  C. Steele,et al.  Behavior of the basilar membrane with pure-tone excitation. , 1974, The Journal of the Acoustical Society of America.

[81]  C. Fernández Dimensions of the Cochlea (Guinea Pig) , 1952 .

[82]  P. Santi,et al.  Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea , 1999, Hearing Research.