YIPF5 and YIF1A recycle between the ER and the Golgi apparatus and are involved in the maintenance of the Golgi structure.

[1]  N. Nakamura,et al.  Characterization of ArfGAP1 and FinGER7/FinGER8 interaction by quantitative yeast two-hybrid analysis , 2008 .

[2]  H. Hauri,et al.  The cargo receptors Surf4, endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53, and p25 are required to maintain the architecture of ERGIC and Golgi. , 2008, Molecular biology of the cell.

[3]  M. Tagaya,et al.  Mammalian Sec16/p250 Plays a Role in Membrane Traffic from the Endoplasmic Reticulum* , 2007, Journal of Biological Chemistry.

[4]  David J Stephens,et al.  Sec16 Defines Endoplasmic Reticulum Exit Sites and is Required for Secretory Cargo Export in Mammalian Cells , 2006, Traffic.

[5]  B. Glick,et al.  Golgi maturation visualized in living yeast , 2006, Nature.

[6]  A. Nakano,et al.  Live imaging of yeast Golgi cisternal maturation , 2006, Nature.

[7]  H. Hauri,et al.  The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function , 2006, Journal of Cell Science.

[8]  F. Lanni,et al.  GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution , 2006, Nature Cell Biology.

[9]  A. Yamamoto,et al.  Visualization of the post-Golgi trafficking of multiphoton photoactivated transferrin receptors. , 2006, Cell structure and function.

[10]  N. Kiyokawa,et al.  Depletion of vesicle-tethering factor p115 causes mini-stacked Golgi fragments with delayed protein transport. , 2005, Biochemical and biophysical research communications.

[11]  Changjiang Jin,et al.  Human Yip1A specifies the localization of Yif1 to the Golgi apparatus. , 2005, Biochemical and biophysical research communications.

[12]  A. Godi,et al.  The role of the phosphoinositides at the Golgi complex. , 2005, Biochimica et biophysica acta.

[13]  F. Barr,et al.  Golgins and GTPases, giving identity and structure to the Golgi apparatus. , 2005, Biochimica et biophysica acta.

[14]  K. Yoshioka,et al.  Convergence of Cell Cycle Regulation and Growth Factor Signals on GRASP65* , 2005, Journal of Biological Chemistry.

[15]  S. Lorkowski,et al.  Cloning, cellular localization, genomic organization, and tissue-specific expression of the TGFbeta1-inducible SMAP-5 gene. , 2005, Gene.

[16]  J. Lippincott-Schwartz,et al.  ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells , 2005, The Journal of cell biology.

[17]  A. Luini,et al.  Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments , 2004, Nature Cell Biology.

[18]  S. Munro Organelle identity and the organization of membrane traffic , 2004, Nature Cell Biology.

[19]  A. Yamamoto,et al.  Dynamics of Golgi matrix proteins after the blockage of ER to Golgi transport. , 2004, Journal of biochemistry.

[20]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[21]  M. Kitamura,et al.  Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. , 2003, Biochemical and biophysical research communications.

[22]  E. Ohta,et al.  Identification and Characterization of GCP16, a Novel Acylated Golgi Protein That Interacts with GCP170* , 2003, Journal of Biological Chemistry.

[23]  Bruno Antonny,et al.  Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature , 2003, Nature.

[24]  M. Heidtman,et al.  A role for Yip1p in COPII vesicle biogenesis , 2003, The Journal of cell biology.

[25]  S. Munro,et al.  Long coiled-coil proteins and membrane traffic. , 2003, Biochimica et biophysica acta.

[26]  F. Barr,et al.  Golgins in the structure and dynamics of the Golgi apparatus. , 2003, Current opinion in cell biology.

[27]  J. Barrowman,et al.  The Yip1p·Yif1p Complex Is Required for the Fusion Competence of Endoplasmic Reticulum-derived Vesicles* , 2003, Journal of Biological Chemistry.

[28]  J. Gluckman,et al.  Characterization of a novel hematopoietic marker expressed from early embryonic hematopoietic stem cells to adult mature lineages. , 2002, Blood cells, molecules & diseases.

[29]  S. Munro,et al.  Vesicle tethering complexes in membrane traffic. , 2002, Journal of cell science.

[30]  N. Winand,et al.  Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors , 2002, FEBS letters.

[31]  G. Warren,et al.  Golgi architecture and inheritance. , 2002, Annual review of cell and developmental biology.

[32]  M. Weiss,et al.  Sorting of Golgi resident proteins into different subpopulations of COPI vesicles , 2001, The Journal of cell biology.

[33]  S. Pfeffer,et al.  Rab GTPases: specifying and deciphering organelle identity and function. , 2001, Trends in cell biology.

[34]  Y. Misumi,et al.  Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus. , 2001, Journal of cell science.

[35]  H. Horstmann,et al.  A Membrane Protein Enriched in Endoplasmic Reticulum Exit Sites Interacts with COPII* , 2001, The Journal of Biological Chemistry.

[36]  Hiroshi Sato,et al.  An Essential Cytoplasmic Domain for the Golgi Localization of Coiled-coil Proteins with a COOH-terminal Membrane Anchor* , 2001, The Journal of Biological Chemistry.

[37]  Marino Zerial,et al.  Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.

[38]  J. Rothman,et al.  The Debate about Transport in the Golgi—Two Sides of the Same Coin? , 2000, Cell.

[39]  R. Sternglanz,et al.  A novel Golgi membrane protein is part of a GTPase‐binding protein complex involved in vesicle targeting , 2000, The EMBO journal.

[40]  F. Hughson,et al.  Membrane Tethering and Fusion in the Secretory and Endocytic Pathways , 2000, Traffic.

[41]  G. Griffiths Gut Thoughts on the Golgi Complex , 2000, Traffic.

[42]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Pepperkok,et al.  Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum , 1999, Nature Cell Biology.

[44]  H. Hauri,et al.  The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. , 1998, Journal of cell science.

[45]  D. Gallwitz,et al.  Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p , 1998, The EMBO journal.

[46]  Y. Misumi,et al.  Phosphorylation of the Vesicle Docking Protein p115 Regulates Its Association with the Golgi Membrane* , 1998, The Journal of Biological Chemistry.

[47]  H. Hauri,et al.  The Recycling of ERGIC-53 in the Early Secretory Pathway , 1997, The Journal of Biological Chemistry.

[48]  G. Warren,et al.  The Vesicle Docking Protein p115 Binds GM130, a cis-Golgi Matrix Protein, in a Mitotically Regulated Manner , 1997, Cell.

[49]  R. Schekman,et al.  Coat Proteins and Vesicle Budding , 1996, Science.

[50]  G. Warren,et al.  Characterization of a cis-Golgi matrix protein, GM130 , 1995, The Journal of cell biology.

[51]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[52]  H. Schägger,et al.  Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. , 1994, Analytical biochemistry.

[53]  I. Sandoval,et al.  gp74 a membrane glycoprotein of the cis-Golgi network that cycles through the endoplasmic reticulum and intermediate compartment , 1994, The Journal of cell biology.

[54]  G. Bokoch,et al.  Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes , 1992, The Journal of cell biology.

[55]  O. Weisz,et al.  Rat liver dipeptidylpeptidase IV contains competing apical and basolateral targeting information. , 1992, The Journal of biological chemistry.

[56]  H. Hauri,et al.  The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi , 1991, The Journal of cell biology.

[57]  P. Argos,et al.  β-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the golgi complex, shows homology to β-adaptin , 1991, Cell.

[58]  J. Lippincott-Schwartz,et al.  Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110-kD peripheral membrane protein with the Golgi apparatus , 1991, The Journal of cell biology.

[59]  J. Lippincott-Schwartz,et al.  Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin a suggests an ER recycling pathway , 1990, Cell.

[60]  J. Lippincott-Schwartz,et al.  Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER , 1989, Cell.

[61]  Y. Misumi,et al.  Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane-anchoring domain. , 1989, The Journal of biological chemistry.

[62]  H. Hauri,et al.  Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus , 1988, The Journal of cell biology.

[63]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[64]  J. Rose,et al.  A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein , 1985, Journal of virology.

[65]  J. Kyhse-Andersen Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. , 1984, Journal of biochemical and biophysical methods.

[66]  D. Wessel,et al.  A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. , 1984, Analytical biochemistry.

[67]  G. D. Johnson,et al.  A simple method of reducing the fading of immunofluorescence during microscopy. , 1981, Journal of immunological methods.

[68]  A. Murdoch Cloning , 2007, Ethics & Medics.

[69]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[70]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[71]  A. F. Whiting Identification , 1960, Australian Water Bugs. (Hemiptera - Heteroptera, Gerromorpha & Nepomorpha).

[72]  R. Dulbecco,et al.  PLAQUE FORMATION AND ISOLATION OF PURE LINES WITH POLIOMYELITIS VIRUSES , 1954, The Journal of experimental medicine.