Three Types of Gamma-Ray Bursts

A multivariate analysis of gamma-ray burst (GRB) bulk properties is presented to discriminate between distinct classes of GRBs. Several variables representing burst duration, fluence, and spectral hardness are considered. Two multivariate clustering procedures are used on a sample of 797 bursts from the Third BATSE Catalog, a nonparametric average linkage hierarchical agglomerative clustering procedure validated with Wilks' Λ* and other multivariate analysis of variance tests and a parametric maximum likelihood model-based clustering procedure assuming multinormal populations calculated with the Expectation-Maximization algorithm and validated with the Bayesian Information Criterion. The two methods yield very similar results. The BATSE GRB population consists of three classes with the following duration/fluence/spectrum bulk properties: class I with long/bright/soft bursts, class II with short/faint/hard bursts, and class III with intermediate/intermediate/soft bursts. One outlier due to spurious data is also present. Classes I and II correspond to those reported by Kouveliotou et al., but class III is clearly defined here for the first time.

[1]  A Principal Component Analysis of the 3B Gamma-Ray Burst Data , 1997, astro-ph/9708084.

[2]  P. Mészáros,et al.  Simulations of Gamma-Ray Bursts from External Shocks: Time Variability and Spectral Correlations , 1997, astro-ph/9703187.

[3]  C. Kouveliotou,et al.  The Identification of Two Different Spectral Types of Pulses in Gamma-Ray Bursts , 1997 .

[4]  J. Hakkila,et al.  Internal Luminosity Distribution of Bright Gamma-Ray Bursts and Its Relation to Duration and Spectral Hardness , 1997 .

[5]  B. Belli,et al.  Evidence for the Galactic Origin of Gamma-Ray Bursts , 1997 .

[6]  V. Petrosian,et al.  Time Dilation of BATSE Gamma-Ray Bursts , 1996, astro-ph/9607127.

[7]  TIME DILATION OF BATSE GAMMA-RAY BURSTS , 1997 .

[8]  Jeffrey D. Scargle,et al.  Statistical challenges in modern astronomy II , 1997 .

[9]  Richard L. White Object Classification in Astronomical Images , 1997 .

[10]  J. Dezalay,et al.  The Hardness-Duration Diagram of Gamma-Ray Bursts , 1996 .

[11]  Michael L. McCollough,et al.  The Third BATSE Gamma-Ray Burst Catalog , 1996 .

[12]  J. Katz,et al.  The Long and the Short of Gamma-Ray Bursts , 1995, astro-ph/9512160.

[13]  Geoffrey N. Pendleton,et al.  BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts , 1995, astro-ph/9509078.

[14]  R. Preece,et al.  The nu F nu Peak Energy Distributions of Gamma-Ray Bursts Observed by BATSE , 1995 .

[15]  D. Q. Lamb,et al.  THE DISTANCE SCALE TO GAMMA-RAY BURSTS , 1995 .

[16]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[17]  Gamma-Ray Burst Peak Duration as a Function of Energy , 1995, astro-ph/9504075.

[18]  C. Kouveliotou,et al.  Duration distributions of bright and dim BATSE gamma-ray bursts , 1994, astro-ph/9408063.

[19]  K. Ashman,et al.  Detecting Bimodality in Astronomical Datasets , 1994, astro-ph/9408030.

[20]  J. Lestrade A NEW VARIABILITY PARAMETER FOR GAMMA-RAY BURST TIME PROFILES , 1994 .

[21]  Geoffrey N. Pendleton,et al.  Spectral evolution of a subclass of gamma-ray bursts observed by batse , 1994 .

[22]  Applications of Artificial Neural Networks V , 1994 .

[23]  The continuum spectral characteristics of gamma-ray bursts observed by BATSE , 1994 .

[24]  Chris W. Baumgart Taxonomy of gamma ray burster data using a self-organizing neural network , 1994, Defense, Security, and Sensing.

[25]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[26]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[27]  D. Lamb,et al.  Evidence for two distinct morphological classes of gamma-ray bursts from their short time scale variability , 1993, astro-ph/9306011.

[28]  Dipole and Quadrupole Tests of the Isotropy of Gamma-Ray Burst Locations , 1993 .

[29]  M. Rees,et al.  Relativistic Fireballs and Their Impact on External Matter: Models for Cosmological Gamma-Ray Bursts , 1993 .

[30]  E. Feigelson,et al.  Statistical Challenges in Modern Astronomy , 2004, astro-ph/0401404.

[31]  Robert F. Ling,et al.  Applied Multivariate Data Analysis, Vol. I: Regression and Experimental Design (J. D. Jobson) , 1992, SIAM Rev..

[32]  Deborah F. Swayne,et al.  Xgobi: A Dynamic Graphics Program Implemented in X With a Link to S , 1992 .

[33]  Fionn Murtagh,et al.  Multivariate Analysis and Classification of Large Astronomical Databases , 1992 .

[34]  D. Hartmann,et al.  Gamma-ray bursts , 1995 .

[35]  C. Kouveliotou,et al.  On the Nature of Soft Gamma Repeaters , 1991 .

[36]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[37]  D. N. Geary Mixture Models: Inference and Applications to Clustering , 1989 .

[38]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[39]  F. Critchley,et al.  Multivariate Data Analysis , 1988 .

[40]  Adrian E. Raftery,et al.  Fitting straight lines to point patterns , 1984, Pattern Recognit..

[41]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[42]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[43]  J. Hartigan Clustering Algorithms , 1975 .

[44]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[45]  William H. Beyer,et al.  Handbook of Tables for Probability and Statistics , 1967 .

[46]  M. Bartlett Further aspects of the theory of multiple regression , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  S. S. Wilks CERTAIN GENERALIZATIONS IN THE ANALYSIS OF VARIANCE , 1932 .

[48]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.