Separation of variables in the Hamilton–Jacobi, Schrödinger, and related equations. I. Complete separation
暂无分享,去创建一个
[1] Luther Pfahler Eisenhart,et al. Separable Systems of Stackel , 1934 .
[2] P. Winternitz,et al. A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .
[3] P. Sommers. On Killing tensors and constants of motion , 1973 .
[4] M. M. G. Ricci,et al. Méthodes de calcul différentiel absolu et leurs applications , 1900 .
[5] D. Spencer,et al. Separability conditions for the laplace and Helmholtz equations , 1952 .
[6] W. Miller,et al. Lie theory and separation of variables. 6. The equation iUt + Δ2U = 0 , 1975 .
[7] R. Penrose,et al. On quadratic first integrals of the geodesic equations for type {22} spacetimes , 1970 .
[8] E. C. Kemble. The Fundamental Principles Of Quantum Mechanics , 1937 .
[9] I. Hauser,et al. Structural equations for Killing tensors of order two. I , 1975 .
[10] H. P. Robertson. Bemerkung über separierbare Systeme in der Wellenmechanik , 1928 .
[11] P. Morse,et al. Methods of theoretical physics , 1955 .
[12] H. Kramers. Die Grundlagen der Quantentheorie , 1933 .
[13] W. Miller,et al. Lie theory and separation of variables. 5. The equations iUt + Uxx = 0 and iUt + Uxx −c/x2 U = 0 , 1974 .
[14] P. Hartman. Ordinary Differential Equations , 1965 .
[15] B. Carter. Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .
[16] T. Levi-Civita. Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabili , 1904 .
[17] O. Veblen. Invariants of Quadratic Differential Forms , 2022 .