Computational strategies for the optimal operation of large-scale chemical processes

This dissertation deals with the development of computational strategies that enable the implementation of sophisticated first-principles dynamic models in on-line chemical process operations. During the last years, it has been recognized that first-principles models can lead to a tighter integration of the decision-making hierarchy and, consequently, to an increased process performance. The development and implementation of model-based applications involves the extensive use of parameter estimation, state estimation, data reconciliation, model predictive control, and real-time optimization techniques which require the solution of optimization problems constrained by differential and algebraic equations (DAEs). As models of increasing sophistication are considered, the computational complexity of these problems becomes a crucial obstacle. In this work, we present strategies targeted towards this issue. The strategies are based on simultaneous full-discretization approaches and sparsity-exploiting interior-point nonlinear programming (NLP) solvers. In addition, they make use of classical numerical linear algebra techniques and NLP sensitivity concepts. We first derive strategies for large-scale parameter estimation including standard leastsquares and advanced errors-in-variables formulations. Here, we exploit the multi-set structure of these problems inside the NLP solver and derive strategies to extract large-scale covariance information directly from the Karush-Kuhn-Tucker (KKT) matrix. In addition, we establish connections between the numerical properties of the KKT matrix, second order optimality conditions and observability in order to verify the uniqueness of the estimates through the NLP solver. We then derive on-line synchronization strategies for moving horizon state estimation (MHE) and nonlinear model predictive control (NMPC). These strategies are based on an advanced-step principle which allows to accommodate large-scale dynamic models in on-line environments. Here, we use the dynamic model to predict the future state and measurements, use this information to solve reference problems in between sampling times, and correct these solutions on-line using NLP sensitivity. This predictor-corrector type strategy allows to minimize the on-line computational time by at least two orders of magnitude and to decouple the MHE and NMPC problems solved in background. We establish rigorous bounds on the loss of optimality, sufficient stability conditions and connections with traditional strategies such as Riccati-like regulators and Kalman filters. Finally, we implement the proposed computational strategies in the state-of-the-art NLP solver IPOPT and demonstrate the concepts through small-scale case studies. Scale-up and computational performance are demonstrated in a large-scale low-density polyethylene tubular reactor process. In this process, we use a detailed first-principles reactor model to derive an economics-oriented operational framework able to improve its overall profitability.

[1]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[2]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[3]  C. Kiparissides,et al.  On‐line parameter estimation in a high‐pressure low‐density polyethylene tubular reactor , 1996 .

[4]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[5]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[6]  L. Biegler,et al.  A reduced hessian strategy for sensitivity analysis of optimal flowsheets , 1987 .

[7]  R. Donald Bartusiak,et al.  NLMPC: A Platform for Optimal Control of Feed- or Product-Flexible Manufacturing , 2007 .

[8]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[9]  Hans Bock,et al.  FINITE HORIZON OPTIMIZING CONTROL OF ADVANCED SMB CHROMATOGRAPHIC PROCESSES , 2005 .

[10]  Jacek Gondzio,et al.  Reoptimization With the Primal-Dual Interior Point Method , 2002, SIAM J. Optim..

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  Christopher L.E. Swartz,et al.  Sensitivity analysis of LP-MPC cascade control systems , 2009 .

[13]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[14]  Robert E. Young,et al.  Evolution of an Industrial Nonlinear Model Predictive Controller , 2002 .

[15]  Martin Guay,et al.  A new real-time perspective on non-linear model predictive control , 2006 .

[16]  A. Grancharova,et al.  Computational Aspects of Approximate Explicit Nonlinear Model Predictive Control , 2007 .

[17]  Hans Seidl,et al.  Peroxides as Initiators for High-Pressure Polymerization , 1981 .

[18]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[19]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[20]  Rüdiger Franke,et al.  Integration of Advanced Model Based Control with Industrial IT , 2007 .

[21]  Ignacio E. Grossmann,et al.  Discrete Optimization Methods and their Role in the Integration of Planning and Scheduling , 2001 .

[22]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[23]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[24]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .

[25]  Christof Büskens,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods , 2001 .

[26]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear systems , 2007 .

[27]  T. Edgar,et al.  A sequential error-in-variables method for nonlinear dynamic systems , 1991 .

[28]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[29]  K. Choi,et al.  On-Line Parameter Estimation in a Continuous Polymerization Process , 1996 .

[30]  G. A. Hicks,et al.  Approximation methods for optimal control synthesis , 1971 .

[31]  Wolfgang Marquardt,et al.  Towards integrated dynamic real-time optimization and control of industrial processes , 2003 .

[32]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[33]  Lorenz T. Biegler,et al.  An extension of Newton-type algorithms for nonlinear process control , 1995, Autom..

[34]  Sigurd Skogestad,et al.  Self-optimizing control: the missing link between steady-state optimization and control , 2000 .

[35]  Jay H. Lee,et al.  An introduction to a dynamic plant-wide optimization strategy for an integrated plant , 2004, Comput. Chem. Eng..

[36]  L. Biegler,et al.  Large-Scale Parameter Estimation in Low-Density Polyethylene Tubular Reactors , 2006 .

[37]  Thomas F. Edgar Control and operations: When does controllability equal profitability? , 2003 .

[38]  A. Lowenfels A REVIEW AND UPDATE , 1979 .

[39]  A. Kienle,et al.  Modeling and analysis of a plant for the production of low density polyethylene , 2006, Comput. Chem. Eng..

[40]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[41]  J. Macgregor,et al.  Mathematical Modeling, Optimization, and Quality Control of High-Pressure Ethylene Polymerization Reactors , 1993 .

[42]  李幼升,et al.  Ph , 1989 .

[43]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[44]  H. Knuuttila,et al.  Advanced polyethylene technologies: Controlled material properties , 2004 .

[45]  Ignacio E. Grossmann,et al.  Simultaneous cyclic scheduling and optimal control of polymerization reactors , 2007 .

[46]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[47]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[48]  Eduardo Sontag,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999, at - Automatisierungstechnik.

[49]  J. O'Reilly,et al.  Model predictive control of nonlinear systems: computational burden and stability , 2000 .

[50]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[51]  Lorenz T. Biegler,et al.  Optimization Strategies for Dynamic Systems , 2009, Encyclopedia of Optimization.

[52]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[53]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[54]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[55]  Zoltan K. Nagy,et al.  Real-Time Implementation of Nonlinear Model Predictive Control of Batch Processes in an Industrial Framework , 2007 .

[56]  Günter Wozny,et al.  Sequential Parameter Estimation for Large-Scale Systems with Multiple Data Sets. 1. Computational Framework , 2003 .

[57]  A. Brandolin,et al.  Heat transfer coefficient in a high pressure tubular reactor for ethylene polymerization , 1998 .

[58]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[59]  Iiro Harjunkoski,et al.  Production optimization for continuously operated processes with optimal operation and scheduling of multiple units , 2006, Comput. Chem. Eng..

[60]  James B. Rawlings,et al.  The stability of constrained receding horizon control with state estimation , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[61]  M. B. Kelly,et al.  Mathematical Modeling of Free-Radical Ethylene Copolymerization in High-Pressure Tubular Reactors , 2005 .

[62]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[63]  Michael L. Call,et al.  Modeling Fouling Effects in LDPE Tubular Polymerization Reactors. 3. Computational Fluid Dynamics Analysis of a Reacting Zone , 2005 .

[64]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[65]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[66]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[67]  F. Allgower,et al.  Efficient output feedback nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[68]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[69]  L. Biegler,et al.  FAST SOLVERS AND RIGOROUS MODELS: CAN BOTH BE ACCOMMODATED IN NMPC? , 2006 .

[70]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[71]  Dong-Min Kim,et al.  Molecular weight distribution in low-density polyethylene polymerization; impact of scission mechanisms in the case of a tubular reactor , 2004 .

[72]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[73]  G. Luft,et al.  Effectiveness of Organic Peroxide Initiators in the High-Pressure Polymerization of Ethylene , 1977 .

[74]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[75]  Lorenz T. Biegler,et al.  Nonlinear Optimization with Many Degrees of Freedom in Process Engineering , 2004 .

[76]  A. Brandolin,et al.  High Pressure Polymerization of Ethylene. an Improved Mathematical Model for Industrial Tubular Reactors , 1996 .

[77]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[78]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[79]  Costas Kiparissides,et al.  COMPUTER AIDED DESIGN OF POLYMER REACTORS , 1996 .

[80]  Lorenz T. Biegler,et al.  Parameter Estimation for a Polymerization Reactor Model with a Composite-Step Trust-Region NLP Algorithm , 2004 .

[81]  Wolfgang Marquardt,et al.  Structural Concepts for Optimization Based Control of Transient Processes , 2000 .

[82]  Costas Kiparissides,et al.  Toward the Development of a General Framework for Modeling Molecular Weight and Compositional Changes in Free-Radical Copolymerization Reactions , 1992 .

[83]  D. C. White,et al.  Online optimization : What have we learned? , 1998 .

[84]  A. Buchelli,et al.  Physical Properties, Reactor Modeling, and Polymerization Kinetics in the Low-Density Polyethylene Tubular Reactor Process1 , 2002 .

[85]  John T. Betts,et al.  Large Scale Parameter Estimation Using Sparse Nonlinear Programming Methods , 2003, SIAM J. Optim..

[86]  P. Moran Estimating structural and functional relationships , 1971 .

[87]  H. J. Pesch Real-time computation of feedback controls for constrained optimal control problems. Part 2: A correction method based on multiple shooting , 1989 .

[88]  U. Ascher,et al.  A New Basis Implementation for a Mixed Order Boundary Value ODE Solver , 1987 .

[89]  Lorenz T. Biegler,et al.  Large-Scale Nonlinear Programming for Multi-scenario Optimization , 2006, HPSC.

[90]  Wolfgang Marquardt,et al.  Dynamic predictive scheduling of operational strategies for continuous processes using mixed-logic dynamic optimization , 2007, Comput. Chem. Eng..

[91]  H. Maurer,et al.  Sensitivity Analysis and Real-Time Optimization of Parametric Nonlinear Programming Problems , 2001 .

[92]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[93]  Yoram Bresler,et al.  The stability of nonlinear least squares problems and the Cramer-Rao bound , 2000, IEEE Trans. Signal Process..

[94]  Johan U. Backstrom,et al.  Quadratic programming algorithms for large-scale model predictive control , 2002 .

[95]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[96]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[97]  Moritz Diehl,et al.  A Moving Horizon State Estimation algorithm applied to the Tennessee Eastman Benchmark Process , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[98]  Joseph Z. Lu Challenging control problems and emerging technologies in enterprise optimization , 2001 .

[99]  B. Finlayson Nonlinear analysis in chemical engineering , 1980 .

[100]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[101]  Geoffrey Todd Huntington,et al.  Advancement and analysis of Gauss pseudospectral transcription for optimal control problems , 2007 .

[102]  Ramkumar Karuppiah,et al.  Overview of Planning and Scheduling for Enterprise-wide Optimization of Process Industries (Übersicht über Planungs- und Feinplanungssysteme für die unternehmensweite Optimierung in der verfahrenstechnischen Industrie , 2008, Autom..

[103]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[104]  Nicholas I. M. Gould,et al.  A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations , 2004, TOMS.

[105]  Stephen J. Wright,et al.  Warm-Start Strategies in Interior-Point Methods for Linear Programming , 2002, SIAM J. Optim..

[106]  Lorenz T. Biegler,et al.  A tool to analyze robust stability for model predictive controllers , 1999 .

[107]  P.M.J. Van den Hof,et al.  DEGREES OF FREEDOM ANALYSIS OF ECONOMIC DYNAMIC OPTIMAL PLANTWIDE OPERATION , 2007 .

[108]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[109]  Victor M. Zavala,et al.  Large-scale nonlinear programming strategies for the operation of LDPE tubular reactors , 2008 .

[110]  Victor M. Zavala,et al.  Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation , 2009, Comput. Chem. Eng..

[111]  Wolfgang Marquardt,et al.  Sensitivity-Based Solution Updates in Closed-Loop Dynamic Optimization , 2004 .

[112]  Lorenz T. Biegler,et al.  On-line implementation of nonlinear MPC: an experimental case study , 2000 .

[113]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[114]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[115]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[116]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[117]  Lorenz T. Biegler,et al.  Inference in dynamic error‐in‐variable‐measurement problems , 1997 .

[118]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[119]  Lorenz T. Biegler,et al.  Dynamic optimization of HIPS open-loop unstable polymerization reactors , 2005 .

[120]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[121]  David Q. Mayne,et al.  Nonlinear Model Predictive Control:Challenges and Opportunities , 2000 .

[122]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[123]  A. Hamielec,et al.  A kinetic model for olefin polymerization in high-pressure tubular reactors : a review and update , 1992 .

[124]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[125]  Lorenz T. Biegler,et al.  Process control strategies for constrained nonlinear systems , 1988 .