Annealed proton-exchanged LiNbO3 ridge waveguide for photonics application

In this paper, we report a novel LiNbO3 ridge waveguide fabrication technique based on the combination of Annealed Proton-Exchanging (APE) and precise diamond blade dicing. The process is ultra compact and compatible with periodically polled LiNbO3 (PPLN). By selecting optimized fabrication conditions, ridge waveguide with low propagation loss and single transmission mode can be formed at 1064nm and 1500nm wavelength, respectively. Such APE ridge waveguides have potential applications in optical communication, biomedical detection, and especially in nonlinear wavelength conversion.

[1]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[2]  T. Pearsall,et al.  Study of titanium diffusion in lithium‐niobate low‐loss optical waveguides by x‐ray photoelectron spectroscopy , 1976 .

[3]  C. L. Lee,et al.  CF4 plasma etching on LiNbO3 , 1979 .

[4]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[5]  K. Wong,et al.  Characterization of proton‐exchange slab optical waveguides in z‐cut LiNbO3 , 1983 .

[6]  R. Chen,et al.  Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator. , 1986, Optics letters.

[7]  S. Vohra,et al.  Diffusion characteristics and waveguiding properties of proton‐exchanged and annealed LiNbO3 channel waveguides , 1989 .

[8]  M. Fejer,et al.  Annealed proton-exchanged LiNbO(3) waveguides. , 1991, Optics letters.

[9]  H. Casey,et al.  Correlation of refractive index profiles with substitutional hydrogen concentrations in annealed proton‐exchanged LiNbO3 waveguides , 1993 .

[10]  A. Mickelson,et al.  Modeling of proton‐exchanged and annealed channel waveguides and directional couplers , 1993 .

[11]  Sang-Yung Shin,et al.  Proton Exchanged LiNbO3 Ridge Waveguide Fabricated by Wet Etching Process , 1995 .

[12]  I. Barry,et al.  Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion , 1999 .

[13]  P. Wei,et al.  A novel self-aligned fabrication process for nickel-indiffused lithium niobate ridge optical waveguides , 1999 .

[14]  K. Mizuuchi,et al.  Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3. , 2003, Optics letters.

[15]  T. Taira,et al.  High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser , 2003 .

[16]  Huan Wang Design and Simulation of Lithium Niobate Waveguides and Devices , 2006 .

[17]  K. Magari,et al.  Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides , 2006 .

[18]  S. Kurimura,et al.  Quasi-phase-matched adhered ridge waveguide in LiNbO3 , 2006 .