Influence of Surfactants on Hydrocarbon Mobility in Narrow Pores in the Presence of Water

[1]  Mingzhen Wei,et al.  A review of wettability alteration using surfactants in carbonate reservoirs. , 2021, Advances in colloid and interface science.

[2]  Yuliang Su,et al.  Molecular insight into the boundary conditions of water flow in clay nanopores , 2020 .

[3]  Timing Fang,et al.  Static and dynamic behavior of CO2 enhanced oil recovery in nanoslits: Effects of mineral type and oil components , 2020 .

[4]  Sanmei Li,et al.  The effect of surface wrinkles on the properties of water in graphene slit pores , 2020 .

[5]  Q. Feng,et al.  Oil diffusion in shale nanopores: Insight of molecular dynamics simulation , 2019, Journal of Molecular Liquids.

[6]  Yury O Tsybin,et al.  Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches , 2019, Scientific Reports.

[7]  Sergey Pavlov,et al.  “Zhores” — Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology , 2019, Open Engineering.

[8]  A. Malkin,et al.  Modifying the Viscosity of Heavy Crude Oil Using Surfactants and Polymer Additives , 2018, Energy & Fuels.

[9]  F. Banat,et al.  Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives , 2018, Petroleum Science.

[10]  A. Neimark,et al.  Adhesion of Phospholipid Bilayers to Hydroxylated Silica: Existence of Nanometer-Thick Water Interlayers. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[11]  M. S. Kamal,et al.  Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications , 2017 .

[12]  B. Rotenberg,et al.  Diffusion under Confinement: Hydrodynamic Finite-Size Effects in Simulation. , 2017, Journal of chemical theory and computation.

[13]  Farzam Javadpour,et al.  Molecular dynamics simulations of oil transport through inorganic nanopores in shale , 2016 .

[14]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[15]  J. Sheng Status of surfactant EOR technology , 2015 .

[16]  Vikas Varshney,et al.  Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution , 2014 .

[17]  Philip C. Biggin,et al.  JGromacs: A Java Package for Analyzing Protein Simulations , 2011, J. Chem. Inf. Model..

[18]  A. Neimark,et al.  Characterization of micro-mesoporous materials from nitrogen and toluene adsorption: experiment and modeling. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[19]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[20]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[21]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[22]  V. Gubanov,et al.  Interaction of gases with solid surfaces , 1988 .

[23]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[24]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[25]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .