Bismuth iron manganese oxide nanocomposite for high performance asymmetric supercapacitor

[1]  I. Muneer,et al.  A comparison of antibacterial activity in dark-UV light in perspective of surface and structural properties of spray pyrolysis grown Cu doped Cr2O3 thin films , 2023, Surfaces and Interfaces.

[2]  V. Shanmugapriya,et al.  Enhanced electrochemical performance of mixed metal oxide (Bi2O3/ZnO) loaded multiwalled carbon nanotube for high-performance asymmetric supercapacitors , 2022, Journal of Energy Storage.

[3]  A. Nayak,et al.  Phase- and Crystal Structure-Controlled Synthesis of Bi2O3, Fe2O3, and BiFeO3 Nanomaterials for Energy Storage Devices , 2022, ACS Applied Nano Materials.

[4]  Junda Huang,et al.  Formation of NaF-rich Solid Electrolyte Interphase on Na Anode through Additive Induced Anion-enriched Structure of Na+ Solvation. , 2022, Angewandte Chemie.

[5]  Junda Huang,et al.  Pseudo-concentrated electrolytes for lithium metal batteries , 2022, eScience.

[6]  D. Dong,et al.  Revealing the intrinsic effects of introduced Carbon nanotubes for Bi2O3 energy storage materials , 2022, Electrochimica Acta.

[7]  Yuanbing Mao,et al.  Synthesis of perovskite bismuth ferrite embedded nitrogen-doped Carbon (BiFeO3-NC) nanocomposite for energy storage application , 2021, Journal of Energy Storage.

[8]  Changyuan Hu,et al.  MOF-derived Hierarchical Bi2O3 as Advanced Anode for Ni/Bi Alkaline Battery with High Energy Density , 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[9]  H. Efstathiadis,et al.  Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor , 2021, Chemical Engineering Journal.

[10]  Hemalatha Kuzhandaivel,et al.  Low-temperature-synthesized Mn-doped Bi2Fe4O9 as an efficient electrode material for supercapacitor applications , 2021, New Journal of Chemistry.

[11]  P. Pattananuwat,et al.  Novel electrode composites of mixed bismuth-iron oxide / graphene utilizing for photo assisted supercapacitors , 2021 .

[12]  Idris K. Popoola,et al.  Pseudocapacitive contributions to enhanced electrochemical energy storage in hybrid perovskite-nickel oxide nanoparticles composites electrodes , 2020 .

[13]  R. Mane,et al.  Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application , 2020 .

[14]  R. Mane,et al.  Facile synthesis of Bi2O3@MnO2 nanocomposite material: A promising electrode for high performance supercapacitors , 2020 .

[15]  M. Aftab,et al.  Impact of copper doping in NiO thin films on their structure, morphology, and antibacterial activity against Escherichia Coli , 2020 .

[16]  N. Ghosh,et al.  Facile Synthesis of MnFe2O4 Hollow Sphere-Reduced Graphene Oxide Nanocomposites as Electrode Materials for All-Solid-State Flexible High-Performance Asymmetric Supercapacitors , 2020 .

[17]  Rahul Kumar,et al.  Development of paper-based flexible supercapacitor: Bismuth ferrite/graphene nanocomposite as an active electrode material , 2020 .

[18]  R. Mane,et al.  Asymmetric faradaic assembly of Bi2O3 and MnO2 for a high-performance hybrid electrochemical energy storage device , 2019, RSC advances.

[19]  P. Devendran,et al.  Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application , 2019, Journal of Magnetism and Magnetic Materials.

[20]  Xinqiang Xu,et al.  Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors , 2019, Electrochimica Acta.

[21]  B. Zhang,et al.  Facile synthesis of a Bi2MoO6/TiO2 nanotube arrays composite by the solvothermal method and its application for high-performance supercapacitor , 2019, RSC advances.

[22]  Poonam,et al.  Review of supercapacitors: Materials and devices , 2019, Journal of Energy Storage.

[23]  A. Subramania,et al.  Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors , 2018, Electrochimica Acta.

[24]  S. De,et al.  Hydrothermally synthesized BiVO4–reduced graphene oxide nanocomposite as a high performance supercapacitor electrode with excellent cycle stability , 2018 .

[25]  Xun Hu,et al.  Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode , 2018 .

[26]  Rahul Kumar,et al.  Sol–gel synthesized BiFeO3–Graphene nanocomposite as efficient electrode for supercapacitor application , 2018, Journal of Materials Science: Materials in Electronics.

[27]  S. Pinitsoontorn,et al.  Effects of Co doping on magnetic and electrochemical properties of BiFeO 3 nanoparticles , 2018 .

[28]  N. Ghosh,et al.  One-Dimensional BiFeO3 Nanowire-Reduced Graphene Oxide Nanocomposite as Excellent Supercapacitor Electrode Material , 2018 .

[29]  Xiaojuan Jin,et al.  High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor , 2017, Scientific Reports.

[30]  S. Haider,et al.  Copper doped manganese ferrites nanoparticles anchored on graphene nano-sheets for high performance energy storage applications , 2017 .

[31]  Zhiguo Zhang,et al.  A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors , 2016 .

[32]  G. Rajeshkhanna,et al.  Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application , 2016, Journal of Solid State Electrochemistry.

[33]  Shi-feng Liu,et al.  Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors , 2015 .

[34]  Huiling Yang,et al.  Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density , 2015 .

[35]  G. Diao,et al.  One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. , 2015, ACS applied materials & interfaces.

[36]  M. Z. Butt,et al.  Structural characteristics and inverse Hall–Petch relation in high-purity nickel irradiated with nanosecond infrared laser pulses , 2014 .

[37]  H. Xia,et al.  High-performance asymmetric supercapacitors based on MnFe2 O 4 /graphene nanocomposite as anode material , 2014 .

[38]  R. Selvan,et al.  Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes , 2013 .

[39]  Sanjaya D. Perera,et al.  Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors , 2013 .

[40]  C. Lokhande,et al.  Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. , 2013, ACS applied materials & interfaces.

[41]  Yen‐Po Lin,et al.  Characterization of MnFe 2O 4/LiMn 2O 4 aqueous asymmetric supercapacitor , 2011 .

[42]  Y. Tong,et al.  Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. , 2010, Chemical communications.

[43]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[44]  Yitai Qian,et al.  Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. , 2009, Chemistry.

[45]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[46]  E. Stern,et al.  Strain energy density in the x-ray powder diffraction from mixed crystals and alloys , 2000 .

[47]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films , 1997 .

[48]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[49]  I. Muneer,et al.  Correlation between structural and optoelectronic properties of tin doped indium oxide thin films , 2017 .

[50]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .