Blind identification of LTI-ZMNL-LTI nonlinear channel models

A simple method is proposed for blind identification of discrete-time nonlinear models consisting of two linear time invariant (LTI) subsystems separated by a polynomial-type zero memory nonlinearity (ZMNL) of order N (the LTI-ZMNL-LTI model). The linear subsystems are allowed to be of nonminimum phase (NMP), though the first LTI can be completely identified only if it is of minimum phase. With a circularly symmetric Gaussian input, the linear subsystems can be identified using simple cepstral operations on a single 2-D slice of the N+1 th-order polyspectrum of the output signal. The linear subsystem of an LTI-ZMNL model can be identified using only a 1-D moment or polyspectral slice if it is of minimum phase. The ZMNL coefficients are not identified and need not be known. The order N of the nonlinearity can, in principle, be estimated from the output signal. The methods are analytically simple, computationally efficient, and possess noise suppression characteristics. Computer simulations are presented to support the theory.

[1]  K. Shanmugam,et al.  Analysis and synthesis of a class of nonlinear systems , 1976 .

[2]  E. D. Boer Cross-correlation function of a bandpass nonlinear network , 1976 .

[3]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[4]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[5]  M. Schetzen,et al.  Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.

[6]  M. Rosenblatt,et al.  Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .

[7]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[8]  Alessandro Neri,et al.  Methods for estimating the autocorrelation function of complex Gaussian stationary processes , 1987, IEEE Trans. Acoust. Speech Signal Process..

[9]  Chrysostomos L. Nikias,et al.  The complex cepstrum of higher order cumulants and nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[10]  A. Papoulis,et al.  The Identification Of Certain Nonlinear Systems By Only Observing The Output , 1989, Workshop on Higher-Order Spectral Analysis.

[11]  R. Hermann Volterra modeling of digital magnetic saturation recording channels , 1990, International Conference on Magnetics.

[12]  Anastasios N. Venetsanopoulos,et al.  Characterization of a class of non-Gaussian processes , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[13]  Alessandro Neri,et al.  Bandpass nonlinear systems identification by higher order cross correlation , 1991, IEEE Trans. Signal Process..

[14]  William A. Gardner,et al.  Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems , 1993, IEEE Trans. Inf. Theory.

[15]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[16]  Messaoud Benidir,et al.  Polyspectrum modeling using linear or quadratic filters , 1993, IEEE Trans. Signal Process..

[17]  Dimitrios Hatzinakos,et al.  Nonminimum phase channel deconvolution using the complex cepstrum of the cyclic autocorrelation , 1994, IEEE Trans. Signal Process..

[18]  Bernard C. Picinbono,et al.  On circularity , 1994, IEEE Trans. Signal Process..

[19]  Dimitrios Hatzinakos,et al.  Blind identification of nonlinear models using higher order spectral analysis , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[20]  Lang Tong,et al.  Blind channel identification based on second-order statistics: a frequency-domain approach , 1995, IEEE Trans. Inf. Theory.