A characteristic-mixed finite element method for time-dependent convection-diffusion optimal control problem

Abstract In this paper, we examine the method of characteristic-mixed finite element for the approximation of convex optimal control problem governed by time-dependent convection–diffusion equations with control constraints. For the discretization of the state equation, the characteristic finite element is used for the approximation of the material derivative term (i.e., the time derivative term plus the convection term), and the lowest-order Raviart–Thomas mixed element is applied for the approximation of the diffusion term. We derive some a priori error estimates for both the state and control approximations.

[1]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[2]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[3]  Ningning Yan,et al.  A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation , 2009 .

[4]  Hongxing Rui,et al.  A second order characteristic finite element scheme for convection-diffusion problems , 2002, Numerische Mathematik.

[5]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[6]  Endre Süli,et al.  Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems , 2001, Math. Comput..

[7]  Yanping Chen,et al.  Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem , 2010 .

[8]  Jianwei Zhou,et al.  Superconvergence of triangular mixed finite elements for optimal control problems with an integral constraint , 2010, Appl. Math. Comput..

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[11]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[12]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[13]  Hongfei Fu,et al.  A characteristic finite element method for optimal control problems governed by convection-diffusion equations , 2010, J. Comput. Appl. Math..

[14]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[15]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[16]  Yuri N. Skiba,et al.  Elements of the mathematical modeling in the control of pollutants emissions , 2003 .

[17]  Ningning Yan,et al.  A RT Mixed FEM/DG Scheme for Optimal Control Governed by Convection Diffusion Equations , 2009, J. Sci. Comput..

[18]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[19]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[20]  Malte Braack,et al.  Optimal control in fluid mechanics by finite elements with symmetric stabilization , 2008, SIAM J. Control. Optim..

[21]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[22]  Yanping Chen,et al.  ERROR ESTIMATES AND SUPERCONVERGENCE OF MIXED FINITE ELEMENT FOR QUADRATIC OPTIMAL CONTROL , 2006 .

[23]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[24]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[25]  Hongxing Rui,et al.  A Priori Error Estimates for Optimal Control Problems Governed by Transient Advection-Diffusion Equations , 2009, J. Sci. Comput..

[26]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[27]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .