IMSP schemes for spatially explicit models of cyclic populations and metapopulation dynamics

We examine spatially explicit models described by reaction–diffusion partial differential equations for the study of predator–prey population dynamics. The numerical methods we propose are based on the coupling of a finite difference/element spatial discretization and a suitable partitioned Runge–Kutta scheme for the approximation in time. The RK scheme here implemented uses an implicit scheme for the stiff diffusive term and a partitioned RK symplectic scheme for the reaction term (IMSP schemes). We revisit some results provided in the literature for the classical Lotka–Volterra system and the Rosenzweig–MacArthur model. We then extend the approach to metapopulation dynamics in order to numerically investigate the effect of migration through a corridor connecting two habitat patches. Moreover, we analyze the synchronization properties of subpopulation dynamics, when the migration occurs through corridors of variable sizes.

[1]  Marcus R. Garvie,et al.  Numerische Mathematik Finite element approximation of spatially extended predator – prey interactions with the Holling type II functional response , 2007 .

[2]  R. Tyson,et al.  The Effect of Habitat Fragmentation on Cyclic Population Dynamics: A Numerical Study , 2009, Bulletin of mathematical biology.

[3]  V. Jansen,et al.  The dynamics of two diffusively coupled predator-prey populations. , 2001, Theoretical population biology.

[4]  Katia Koelle,et al.  Dispersal‐induced desynchronization: from metapopulations to metacommunities , 2004 .

[5]  Marcus R. Garvie,et al.  Metapopulation dynamics for spatially extended predator-prey interactions , 2010 .

[6]  Michael J. Conroy,et al.  Parameter Estimation, Reliability, and Model Improvement for Spatially Explicit Models of Animal Populations , 1995 .

[7]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[8]  Takashi Suzuki,et al.  Transient and asymptotic dynamics of a prey–predator system with diffusion , 2012 .

[9]  Horst Malchow,et al.  Spatiotemporal Complexity of Plankton and Fish Dynamics , 2002, SIAM Rev..

[10]  Vincent A. A. Jansen,et al.  Regulation of predator-prey systems through spatial interactions:a possible solution to the paradox of enrichment. , 1995 .

[11]  Andy South,et al.  Dispersal in Spatially Explicit Population Models , 1999 .

[12]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[13]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[14]  M. Turner,et al.  Usefulness of spatially explicit population models in land management , 1995 .

[15]  Peter Turchin,et al.  AVAILABILITY OF FOOD AND THE POPULATION DYNAMICS OF ARVICOLINE RODENTS , 2001 .

[16]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[17]  J. T. Enright Climate and population regulation , 1976, Oecologia.

[18]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[19]  Fasma Diele,et al.  Explicit symplectic partitioned Runge-Kutta-Nyström methods for non-autonomous dynamics , 2011 .

[20]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[21]  B. Danielson,et al.  Spatially Explicit Population Models: Current Forms and Future Uses , 1995 .

[22]  Toshiyuki Koto,et al.  IMEX Runge-Kutta schemes for reaction-diffusion equations , 2008 .

[23]  Fasma Diele,et al.  Implicit - symplectic partitioned (IMSP) Runge-Kutta schemes for predator-prey dynamics , 2012 .

[24]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.