Autophagy in Huntington disease and huntingtin in autophagy

[1]  S. Tabrizi,et al.  The ubiquitin-proteasome system in neurodegeneration. , 2014, Antioxidants & redox signaling.

[2]  K. Inokuchi,et al.  Does autophagy work in synaptic plasticity and memory? , 2014, Reviews in the neurosciences.

[3]  A. L. La Spada,et al.  The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. , 2014, Drug discovery today.

[4]  M. Davidson,et al.  Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin. , 2014, Human molecular genetics.

[5]  Baoxiang Zhao,et al.  Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells , 2014, Autophagy.

[6]  Oxana V. Baranova,et al.  Inhibition of mitochondrial protein import by mutant huntingtin , 2014, Nature Neuroscience.

[7]  S. Tyagi,et al.  Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease , 2014, Cell Biochemistry and Biophysics.

[8]  Cynthia D. Duggan,et al.  Genetic Analysis Reveals that Amyloid Precursor Protein and Death Receptor 6 Function in the Same Pathway to Control Axonal Pruning Independent of β-Secretase , 2014, The Journal of Neuroscience.

[9]  Erich E Wanker,et al.  The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. , 2014, Human molecular genetics.

[10]  M. Tiwari,et al.  A nonapoptotic role for CASP2/caspase 2 , 2014, Autophagy.

[11]  Chuan-en Wang,et al.  Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A , 2014, Proceedings of the National Academy of Sciences.

[12]  Haidong Gao,et al.  Regulation of p53 Level by UBE4B in Breast Cancer , 2014, PloS one.

[13]  V. Promponas,et al.  iLIR , 2014, Autophagy.

[14]  P. Sorensen,et al.  HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response , 2014, Proceedings of the National Academy of Sciences.

[15]  Ali Ertürk,et al.  Local Pruning of Dendrites and Spines by Caspase-3-Dependent and Proteasome-Limited Mechanisms , 2014, The Journal of Neuroscience.

[16]  E. Holzbaur,et al.  The Regulation of Autophagosome Dynamics by Huntingtin and HAP1 Is Disrupted by Expression of Mutant Huntingtin, Leading to Defective Cargo Degradation , 2014, The Journal of Neuroscience.

[17]  Eric H. Baehrecke,et al.  Self-consumption: the interplay of autophagy and apoptosis , 2014, Nature Reviews Molecular Cell Biology.

[18]  H. Ovaa,et al.  Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies , 2014, FEBS letters.

[19]  Å. Petersén,et al.  Maintenance of Basal Levels of Autophagy in Huntington’s Disease Mouse Models Displaying Metabolic Dysfunction , 2013, PloS one.

[20]  N. Mizushima,et al.  Autophagy and human diseases , 2013, Cell Research.

[21]  F. Saudou,et al.  Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. , 2013, Trends in cell biology.

[22]  Erich E. Wanker,et al.  HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration , 2013, PLoS biology.

[23]  R. Nixon,et al.  The role of autophagy in neurodegenerative disease , 2013, Nature Medicine.

[24]  R. Roos,et al.  The V471A Polymorphism in Autophagy-Related Gene ATG7 Modifies Age at Onset Specifically in Italian Huntington Disease Patients , 2013, PloS one.

[25]  A. LeBlanc Caspase‐6 as a novel early target in the treatment of Alzheimer's disease , 2013, The European journal of neuroscience.

[26]  J. Ramsey,et al.  Distinct Pathways Mediate Axon Degeneration during Apoptosis and Axon-Specific Pruning , 2013, Nature Communications.

[27]  S. Sarkar,et al.  Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington's disease and other neurodegenerative disorders. , 2013, Drug discovery today. Technologies.

[28]  M. Wong Mammalian Target of Rapamycin (mTOR) Pathways in Neurological Diseases , 2013, Biomedical Journal.

[29]  L. Berthiaume,et al.  Regulation of co‐ and post‐translational myristoylation of proteins during apoptosis: interplay of N‐myristoyltransferases and caspases , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  J. Terzic,et al.  Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates , 2013, Journal of Cell Science.

[31]  Ryan J Kast,et al.  Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems. , 2012, Human molecular genetics.

[32]  A. Kimchi,et al.  Life in the balance – a mechanistic view of the crosstalk between autophagy and apoptosis , 2012, Journal of Cell Science.

[33]  R. Owen,et al.  A new, robust, and nonradioactive approach for exploring N-myristoylation[S] , 2012, Journal of Lipid Research.

[34]  H. Serve,et al.  Ubiquitination and selective autophagy , 2012, Cell Death and Differentiation.

[35]  A. Simonsen,et al.  The role of ALFY in selective autophagy , 2012, Cell Death and Differentiation.

[36]  Pasi I. Tuunanen,et al.  Caspase-6 Activity in a BACHD Mouse Modulates Steady-State Levels of Mutant Huntingtin Protein But Is Not Necessary for Production of a 586 Amino Acid Proteolytic Fragment , 2012, The Journal of Neuroscience.

[37]  B. Hyman,et al.  Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology , 2012, Nature Reviews Neuroscience.

[38]  S. Rikka,et al.  Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy* , 2012, The Journal of Biological Chemistry.

[39]  S. Wesselborg,et al.  The incredible ULKs , 2012, Cell Communication and Signaling.

[40]  E. Holzbaur,et al.  Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons , 2012, The Journal of cell biology.

[41]  P. Mcgeer,et al.  Optineurin in Huntington's disease intranuclear inclusions , 2012, Neuroscience Letters.

[42]  L. Berthiaume,et al.  Tandem reporter assay for myristoylated proteins post‐translationally (TRAMPP) identifies novel substrates for post‐translational myristoylation: PKC∊, a case study , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[43]  A. Cuervo,et al.  MOLECULAR DETERMINANTS OF SELECTIVE CLEARANCE OF PROTEIN INCLUSIONS BY AUTOPHAGY , 2012, Nature Communications.

[44]  D. Sulzer,et al.  Constitutive Upregulation of Chaperone-Mediated Autophagy in Huntington's Disease , 2011, The Journal of Neuroscience.

[45]  Yutaka Sato,et al.  Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy , 2011, Autophagy.

[46]  M. Hayden,et al.  Caspase-6 and neurodegeneration , 2011, Trends in Neurosciences.

[47]  P. Marks,et al.  SAHA Decreases HDAC 2 and 4 Levels In Vivo and Improves Molecular Phenotypes in the R6/2 Mouse Model of Huntington's Disease , 2011, PloS one.

[48]  R. Faull,et al.  Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain , 2011, Nature Methods.

[49]  S. Finkbeiner,et al.  A comprehensive glossary of autophagy-related molecules and processes (2nd edition) , 2011, Autophagy.

[50]  Shaun S. Sanders,et al.  Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. , 2011, Human molecular genetics.

[51]  L. Dupuis,et al.  Cytoplasmic dynein in neurodegeneration. , 2011, Pharmacology & therapeutics.

[52]  I. Nezis,et al.  p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects , 2011, Autophagy.

[53]  Q. Zhong,et al.  Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L) , 2011, Proceedings of the National Academy of Sciences.

[54]  M. Granvik,et al.  Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress-Induced Apoptosis , 2011, PloS one.

[55]  D. Rubinsztein,et al.  Protein misfolding disorders and macroautophagy , 2011, Current opinion in cell biology.

[56]  D. Ehrnhoefer,et al.  Small Changes, Big Impact , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[57]  Ernesto Carafoli,et al.  Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli , 2010, EMBO molecular medicine.

[58]  R. Albin,et al.  Early alterations of autophagy in Huntington disease-like mice , 2010, Autophagy.

[59]  G. Cohen,et al.  The in vitro cleavage of the hAtg proteins by cell death proteases , 2010, Autophagy.

[60]  L. Raymond,et al.  Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation In Vivo , 2010, The Journal of Neuroscience.

[61]  A. Cuervo,et al.  Autophagic pathways and metabolic stress , 2010, Diabetes, obesity & metabolism.

[62]  J. Steffan Does Huntingtin play a role in selective macroautophagy? , 2010, Cell cycle.

[63]  Sarah J Tabrizi,et al.  Huntington’s disease , 2010, BMJ : British Medical Journal.

[64]  He Li,et al.  Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. , 2010, Human molecular genetics.

[65]  M. Sheng,et al.  Caspase-3 Activation via Mitochondria Is Required for Long-Term Depression and AMPA Receptor Internalization , 2010, Cell.

[66]  Dimitri Krainc,et al.  The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. , 2010, Molecular cell.

[67]  A. Cuervo,et al.  Chaperone‐mediated autophagy in health and disease , 2010, FEBS letters.

[68]  D. Sulzer,et al.  CARGO RECOGNITION FAILURE IS RESPONSIBLE FOR INEFFICIENT AUTOPHAGY IN HUNTINGTON’S DISEASE , 2010, Nature Neuroscience.

[69]  Hsinyu Lee,et al.  The Evolutionarily Conserved Interaction Between LC3 and p62 Selectively Mediates Autophagy-Dependent Degradation of Mutant Huntingtin , 2010, Cellular and Molecular Neurobiology.

[70]  E. Mandelkow,et al.  Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation , 2010, Autophagy.

[71]  S. Finkbeiner,et al.  IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome , 2009, The Journal of cell biology.

[72]  S. Finkbeiner,et al.  Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice , 2009, Neuron.

[73]  D. Rubinsztein,et al.  Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3 , 2009, Brain : a journal of neurology.

[74]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[75]  D. Krainc,et al.  Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation , 2009, Cell.

[76]  G. Egea,et al.  Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. , 2009, Molecular biology of the cell.

[77]  D. Ehrnhoefer,et al.  Mouse models of Huntington disease: variations on a theme , 2009, Disease Models & Mechanisms.

[78]  Steven Finkbeiner,et al.  Single Neuron Ubiquitin-Proteasome Dynamics Accompanying Inclusion Body Formation in Huntington Disease* , 2009, Journal of Biological Chemistry.

[79]  Suzanne Tydlacka,et al.  Differential Activities of the Ubiquitin–Proteasome System in Neurons versus Glia May Account for the Preferential Accumulation of Misfolded Proteins in Neurons , 2008, The Journal of Neuroscience.

[80]  S. Pattingre,et al.  JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. , 2008, Molecular cell.

[81]  D. Rubinsztein,et al.  Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. , 2008, Nature chemical biology.

[82]  M. Sohrmann,et al.  Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease , 2008, Nature Cell Biology.

[83]  S. Gygi,et al.  Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. , 2008, Human molecular genetics.

[84]  R. Atwal,et al.  Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. , 2007, Human molecular genetics.

[85]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[86]  Howard Schulman,et al.  Global changes to the ubiquitin system in Huntington's disease , 2007, Nature.

[87]  S. Rodríguez-Enríquez,et al.  Selective degradation of mitochondria by mitophagy. , 2007, Archives of biochemistry and biophysics.

[88]  Z. Yue,et al.  Regulation of Neuronal Autophagy in Axon: Implication of Autophagy in Axonal Function and Dysfunction/Degeneration , 2007, Autophagy.

[89]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[90]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[91]  L. Raymond,et al.  Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin , 2006, Cell.

[92]  J. Olson,et al.  Regional and cellular gene expression changes in human Huntington's disease brain. , 2006, Human molecular genetics.

[93]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[94]  Steve D. M. Brown,et al.  Dynein mutations impair autophagic clearance of aggregate-prone proteins , 2005, Nature Genetics.

[95]  N. Nukina,et al.  BAG-1 associates with the polyglutamine-expanded huntingtin aggregates , 2005, Neuroscience Letters.

[96]  J. Lemasters Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. , 2005, Rejuvenation research.

[97]  N. Nukina,et al.  Increased expression of p62 in expanded polyglutamine‐expressing cells and its association with polyglutamine inclusions , 2004, Journal of neurochemistry.

[98]  Francesco Scaravilli,et al.  Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease , 2004, Nature Genetics.

[99]  P. Pandolfi,et al.  SUMO Modification of Huntingtin and Huntington's Disease Pathology , 2004, Science.

[100]  Jeremy N. Skepper,et al.  α-Synuclein Is Degraded by Both Autophagy and the Proteasome* , 2003, Journal of Biological Chemistry.

[101]  J. Gordon,et al.  The Biology and Enzymology of ProteinN-Myristoylation* 210 , 2001, The Journal of Biological Chemistry.

[102]  Sherry F. Grissom,et al.  The mitochondrial permeability transition initiates autophagy in rat hepatocytes , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[103]  D. Sulzer,et al.  Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. , 2001, Human molecular genetics.

[104]  H. Lehrach,et al.  Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. , 2001, Molecular biology of the cell.

[105]  Michael S. Levine,et al.  Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice , 2000, Nature Genetics.

[106]  M. DiFiglia,et al.  Huntingtin Expression Stimulates Endosomal–Lysosomal Activity, Endosome Tubulation, and Autophagy , 2000, The Journal of Neuroscience.

[107]  E. Wanker,et al.  Huntington's Disease Intranuclear Inclusions Contain Truncated, Ubiquitinated Huntingtin Protein , 1999, Experimental Neurology.

[108]  J. Hodgson,et al.  Huntingtin Is Ubiquitinated and Interacts with a Specific Ubiquitin-conjugating Enzyme* , 1996, The Journal of Biological Chemistry.

[109]  Virginia E. Papaioannou,et al.  Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue , 1995, Nature Genetics.

[110]  A. Joyner,et al.  Inactivation of the mouse Huntington's disease gene homolog Hdh. , 1995, Science.

[111]  S. Floresco,et al.  Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes , 1995, Cell.

[112]  Manish S. Shah,et al.  A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes , 1993, Cell.

[113]  L. Berthiaume,et al.  Post-translational myristoylation: Fat matters in cellular life and death. , 2011, Biochimie.

[114]  D. Rubinsztein,et al.  Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies , 2009, Cell Death and Differentiation.