On the F2-linear relations of Mersenne Twister pseudorandom number generators

Sequence generators obtained by linear recursions over the two-element field F 2 , i.e., F 2 -linear generators, are widely used as pseudorandom number generators. For example, the Mersenne Twister MT19937 is one of the most successful applications. An advantage of such generators is that we can assess them quickly by using theoretical criteria, such as the dimension of equidistribution with v -bit accuracy. To compute these dimensions, several polynomial-time lattice reduction algorithms have been proposed in the case of F 2 -linear generators.In this paper, in order to assess non-random bit patterns in dimensions that are higher than the dimension of equidistribution with v -bit accuracy, we focus on the relationship between points in the Couture-L'Ecuyer dual lattices and F 2 -linear relations on the most significant v bits of output sequences, and consider a new figure of merit N v based on the minimum weight of F 2 -linear relations whose degrees are minimal for v . Next, we numerically show that MT19937 has low-weight F 2 -linear relations in dimensions higher than 623, and show that some output vectors with specific lags are rejected or have small p-values in birthday spacings tests. We also report that some variants of Mersenne Twister, such as WELL generators, are significantly improved from the perspective of N v .

[1]  Pierre L'Ecuyer,et al.  Improved long-period generators based on linear recurrences modulo 2 , 2004, TOMS.

[2]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[3]  Pierre L'Ecuyer,et al.  Lattice computations for random numbers , 2000, Math. Comput..

[4]  Takuji Nishimura,et al.  A Nonempirical Test on the Weight of Pseudorandom Number Generators , 2002 .

[5]  Kurt Mahler On a theorem in the geometry of numbers in a space of Laurent series , 1983 .

[6]  Mutsuo Saito,et al.  A PRNG Specialized in Double Precision Floating Point Numbers Using an Affine Transition , 2009 .

[7]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[8]  K. Mahler,et al.  An Analogue to Minkowski's Geometry of Numbers in a Field of Series , 1941 .

[9]  Rui Guo,et al.  Improving Random Number Generators in the Monte Carlo simulations via twisting and combining , 2008, Comput. Phys. Commun..

[10]  James H. Lindholm An analysis of the pseudo-randomness properties of subsequences of long m -sequences , 1968, IEEE Trans. Inf. Theory.

[11]  H. Niederreiter The Multiple-Recursive Matrix Method for Pseudorandom Number Generation , 1995 .

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  A. Compagner The hierarchy of correlations in random binary sequences , 1991 .

[14]  Pierre L'Ecuyer,et al.  On the Lattice Structure of a Special Class of Multiple Recursive Random Number Generators , 2014, INFORMS J. Comput..

[15]  J. Gathen Hensel and Newton methods in valuation rings , 1984 .

[16]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[17]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[18]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[19]  H. Niederreiter Factorization of polynomials and some linear-algebra problems over finite fields , 1993 .

[20]  Makoto Matsumoto,et al.  Pseudorandom Number Generation: Impossibility and Compromise , 2006, J. Univers. Comput. Sci..

[21]  S. Tezuka The k -dimensional distribution of combined GFSR sequences , 1994 .

[22]  Dennis K. J. Lin,et al.  Random Number Generation for the New Century , 2000 .

[23]  Francois Panneton Construction d'ensembles de points basee sur des recurrences lineaires dans un corps fini de caracteristique 2 pour la simulation Monte Carlo et l'integration quasi-Monte Carlo , 2004 .

[24]  David Goldsman,et al.  Advancing the Frontiers of Simulation: A Festschrift in Honor of George Samuel Fishman , 2009 .

[25]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[26]  Shin Harase An efficient lattice reduction method for F2-linear pseudorandom number generators using Mulders and Storjohann algorithm , 2011, J. Comput. Appl. Math..

[27]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[28]  Wolfgang M. Schmidt,et al.  Construction and estimation of bases in function fields , 1991 .

[29]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[30]  Pierre L'Ecuyer,et al.  F2-Linear Random Number Generators , 2009 .

[31]  Pierre L'Ecuyer,et al.  On the performance of birthday spacings tests with certain families of random number generators , 2001 .

[32]  Lih-Yuan Deng,et al.  64-Bit and 128-bit DX random number generators , 2010, Computing.

[33]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[34]  Arne Storjohann,et al.  On lattice reduction for polynomial matrices , 2000 .

[35]  Makoto Matsumoto,et al.  Strong deviations from randomness in m-sequences based on trinomials , 1996, TOMC.

[36]  Makoto Matsumoto,et al.  Fast lattice reduction for F2-linear pseudorandom number generators , 2011, Math. Comput..

[37]  Aaldert Compagner,et al.  On the use of reducible polynomials as random number generators , 1993 .

[38]  J. P. R. Tootill,et al.  An Asymptotically Random Tausworthe Sequence , 1973, JACM.

[39]  Shu Tezuka,et al.  The k-distribution of generalized feedback shift register pseudorandom numbers , 1983, CACM.

[40]  Shin Harase Maximally equidistributed pseudorandom number generators via linear output transformations , 2009, Math. Comput. Simul..

[41]  P. L’Ecuyer,et al.  Supplement to On the Distribution of k-Dimensional Vectors for Simple and Combined Tausworthe Sequences , 1991 .

[42]  Pierre L'Ecuyer,et al.  On the Deng-Lin random number generators and related methods , 2004, Stat. Comput..