Effect of surface impurities on downconversion luminescence of Pr3+, Yb3+ activated SrF2 nanoparticles

[1]  Z. Hao,et al.  Efficient Visible-to-NIR Spectral Conversion for Polycrystalline Si Solar Cells and Revisiting the Energy Transfer Mechanism from Ce3+ to Yb3+ in Lu3Al5O12 Host. , 2018, Inorganic chemistry.

[2]  S. A. Artemov,et al.  Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level , 2018, Optical Materials Express.

[3]  M. Berkowski,et al.  Down- and Upconversion Phenomena in Gd3(Al,Ga)5O12 Crystals Doped with Pr3+ and Yb3+ Ions , 2018 .

[4]  G. Boulon,et al.  Toward Optical Ceramics Based on Yb3+ Rare Earth Ion-Doped Mixed Molybdato-Tungstates: Part II - Spectroscopic Characterization , 2017 .

[5]  U. Resch‐Genger,et al.  Quenching of the upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ and NaYF₄:Yb³⁺,Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation. , 2015, Nanoscale.

[6]  P. Ruterana,et al.  Direct imaging of rare-earth ion clusters in Yb : CaF 2 , 2014 .

[7]  L. M. Maestro,et al.  Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M = Ca, Sr) Colloids: Influence of the Host Crystal , 2013 .

[8]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[9]  W.G.J.H.M. van Sark,et al.  Upconverter solar cells: materials and applications , 2011 .

[10]  A. Lita,et al.  Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes. , 2011, Journal of the American Chemical Society.

[11]  R. Moncorgé,et al.  Highly efficient energy transfer in Pr 3+ , Yb 3+ codoped CaF 2 for luminescent solar converters , 2011 .

[12]  K. Krämer,et al.  Enhanced 1G4 emission in NaLaF4: Pr3+, Yb3+ and charge transfer in NaLaF4: Ce3+, Yb3+ studied by fourier transform luminescence spectroscopy , 2011 .

[13]  M. F. Reid,et al.  Downconversion for Solar Cells in YF3:Pr3+, Yb3+ , 2010 .

[14]  Thijs J. H. Vlugt,et al.  Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple , 2010 .

[15]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[16]  B. van der Ende,et al.  Near‐Infrared Quantum Cutting for Photovoltaics , 2009 .

[17]  Jean-Claude G. Bünzli,et al.  New Opportunities for Lanthanide Luminescence , 2007 .

[18]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[19]  C. Goutaudier,et al.  Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X , 2004 .

[20]  H. Bill,et al.  EPR and optical spectroscopy of SrF2 doped with Yb3 , 2001 .

[21]  A. Jha,et al.  Reduction of OH−-related photoluminescence quenching in Pr3+-doped GeS2-based glasses by means of purification , 1999 .

[22]  Renata Reisfeld,et al.  Lasers and Excited States of Rare Earths , 1977 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  R. Buchanan,et al.  Energy Levels of Pr3+ in LaF3 , 1965 .

[25]  U. Ranon,et al.  Charge compensation by interstitial F- ions in rare-earth-doped SrF2 and BaF2☆ , 1964 .

[26]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .