Cumulative Deformation Capacity of Structural Steel Subjected to Extremely Large Amplitude Strain Histories

[1]  Yuanqing Wang,et al.  Fatigue crack initiation and energy-based life analysis for Q345qD bridge steel at low temperatures , 2021 .

[2]  A. Elghazouli,et al.  Cyclic deformation characteristics of S355 and S690 steels under different loading protocols , 2020 .

[3]  Satoshi Yamada,et al.  A concise hysteretic model of structural steel considering the Bauschinger effect , 2016 .

[4]  K. Ray,et al.  Bilinear Coffin–Manson Relationship in Thin Sheets of Interstitial-Free Steel , 2013, Metallurgical and Materials Transactions A.

[5]  J. Berman,et al.  Behavior of butt-welds and treatments using low-carbon steel under cyclic inelastic strains , 2012 .

[6]  Satoshi Yamada,et al.  Evaluation of plastic energy dissipation capacity of steel beams suffering ductile fracture under various loading histories , 2011 .

[7]  Leroy Gardner,et al.  Extremely low cycle fatigue tests on structural carbon steel and stainless steel , 2010 .

[8]  U. Ramamurty,et al.  Low cycle fatigue behaviour of a low interstitial Ni-base superalloy , 2009 .

[9]  Seçil Erim,et al.  Prediction of fracture behavior of steel beam-to-column connections with weld defect using the SINTAP , 2005 .

[10]  Yutaka Yokoyama,et al.  DISTILLING FACTORS AFFECTING WORKABILITY FOR FLOOR GROUND WORK AND ESTABLISHMENT OF QUANTITATIVE VALUE INDICATING EASINESS OF LEVELING , 2005 .

[11]  山田 哲,et al.  動的繰り返し載荷実験結果に基づくダンパー用鋼材の履歴特性の評価 : 速度依存性を考慮したダンパー用鋼材の履歴特性に関する研究 その1 , 2002 .

[12]  N. Nakajima,et al.  RESEARCH ON THE EXTREMELY LOW CYCLE FATIGUE FRACTURE LIMIT OF VARIOUS STEELS FROM THE VIEW POINT OF DAMAGE ENERGY , 2001 .

[13]  N. Nakajima,et al.  RESEARCH ON THE EXTREMELY LOW CYCLE FATIGUE FRACTURE LIMIT OF STRUCTURAL STEEL FROM THE VIEW POINT OF DAMAGE ENERGY : Cumulative damage energy and effect of the large prestrain on fracture , 2000 .

[14]  N. Nakajima,et al.  HYSTERESIS LOOP CHARACTERISTICS OF STRUCTURAL CARBON STEEL SS400 IN VERY LARGE PLASTIC ZONES , 2000 .

[15]  Hiroshi Akiyama,et al.  ULTIMATE ENERGY ABSORPTION CAPACITY OF ROUND-SHAPE STEEL RODS SUBJECTED TO BENDING , 1995 .

[16]  T. Srivatsan Mechanisms of damage in high-temperature, low cycle fatigue of an aluminium alloy , 1988 .

[17]  Stanley T. Rolfe,et al.  FRACTURE AND FATIGUE CONTROL IN STEEL STRUCTURES , 1977 .

[18]  M. Kawamoto,et al.  Completely Reversed Axial Fatigue Tests of Steel in the Plastic Range , 1962 .

[19]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[20]  L. Coffin,et al.  A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal , 1954, Journal of Fluids Engineering.

[21]  S. Manson Behavior of materials under conditions of thermal stress , 1953 .