Macrophages and immunologic inflammation of the kidney.

[1]  C. Alpers,et al.  Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. , 2011, Kidney international.

[2]  J. Duffield,et al.  PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. , 2010, Drug news & perspectives.

[3]  David M. Mosser,et al.  Exploring the full spectrum of macrophage activation , 2010, Nature Reviews Immunology.

[4]  Jie J. Zheng,et al.  Macrophage Wnt7b is critical for kidney repair and regeneration , 2010, Proceedings of the National Academy of Sciences.

[5]  A. McMahon,et al.  Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. , 2010, The American journal of pathology.

[6]  J. Duffield,et al.  Bone Marrow Ly6Chigh Monocytes Are Selectively Recruited to Injured Kidney and Differentiate into Functionally Distinct Populations1 , 2009, The Journal of Immunology.

[7]  Ajay K. Singh,et al.  Serum Amyloid P Inhibits Fibrosis Through FcγR-Dependent Monocyte-Macrophage Regulation in Vivo , 2009, Science Translational Medicine.

[8]  J. Kere,et al.  Evidence for Genetic Association and Interaction Between the TYK2 and IRF5 Genes in Systemic Lupus Erythematosus , 2009, The Journal of Rheumatology.

[9]  R. Schwabe,et al.  CCR1 and CCR5 promote hepatic fibrosis in mice. , 2009, The Journal of clinical investigation.

[10]  C. Alpers,et al.  Deletion of activating Fcgamma receptors does not confer protection in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis. , 2009, The American journal of pathology.

[11]  R. Medzhitov Approaching the asymptote: 20 years later. , 2009, Immunity.

[12]  K. McIntyre,et al.  A CCR2/CCR5-dual antagonist, BMS-A, offers a potential novel oral therapy for the treatment of autoimmune disease (92.6) , 2009, Journal of Immunology.

[13]  A. Smith,et al.  Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis , 2009, PLoS pathogens.

[14]  D. Hume,et al.  CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation , 2009, The Journal of experimental medicine.

[15]  S. Pennathur,et al.  CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. , 2009, Journal of the American Society of Nephrology : JASN.

[16]  J. van Bergen,et al.  Functional Analysis of Killer Ig-Like Receptor-Expressing Cytomegalovirus-Specific CD8+ T Cells1 , 2009, The Journal of Immunology.

[17]  C. Manthey,et al.  Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. , 2009, American journal of physiology. Renal physiology.

[18]  D. Brenner,et al.  Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. , 2008, The American journal of pathology.

[19]  S. Behar,et al.  Tuberculosis Triggers a Tissue-Dependent Program of Differentiation and Acquisition of Effector Functions by Circulating Monocytes1 , 2008, The Journal of Immunology.

[20]  Mark L. Entman,et al.  Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells , 2008, Proceedings of the National Academy of Sciences.

[21]  F. Geissmann,et al.  Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T‐cell responses , 2008, Immunology and cell biology.

[22]  Alan Salama,et al.  Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility , 2008, Nature Genetics.

[23]  I. Wang,et al.  Identification of transforming growth factor beta1-driven genetic programs of acute lung fibrosis. , 2008, American journal of respiratory cell and molecular biology.

[24]  H. Kawachi,et al.  Use of mizoribine as a rescue drug for steroid-resistant pediatric IgA nephropathy , 2008, Pediatric Nephrology.

[25]  T. Wynn,et al.  Cationic Amino Acid Transporter-2 Regulates Immunity by Modulating Arginase Activity , 2008, PLoS pathogens.

[26]  J. Iredale,et al.  Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. , 2008, The American journal of pathology.

[27]  K. Craig,et al.  Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. , 2008, Histology and histopathology.

[28]  Nicola J. Rinaldi,et al.  Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. , 2008, American journal of respiratory and critical care medicine.

[29]  Nicola J. Rinaldi,et al.  Partial Inhibition of Integrin αvβ6 Prevents Pulmonary Fibrosis without Exacerbating Inflammation , 2008 .

[30]  B. Cronstein,et al.  Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. , 2007, The American journal of pathology.

[31]  P. Libby,et al.  The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions , 2007, The Journal of experimental medicine.

[32]  E. Vizi,et al.  A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. , 2007, Blood.

[33]  T. Manser,et al.  Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production , 2007, Genes and Immunity.

[34]  Philippe Froguel,et al.  FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity , 2007, Nature Genetics.

[35]  T. Aitman,et al.  Genes expressed by both mesangial cells and bone marrow-derived cells underlie genetic susceptibility to crescentic glomerulonephritis in the rat. , 2007, Journal of the American Society of Nephrology : JASN.

[36]  N. Van Rooijen,et al.  Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis , 2007, The Journal of experimental medicine.

[37]  M. Mack,et al.  Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. , 2007, The Journal of clinical investigation.

[38]  F. Vrtovsnik,et al.  Fcα receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcRγ adaptor , 2007 .

[39]  B. Croker,et al.  Augmentation of NZB Autoimmune Phenotypes by the Sle1c Murine Lupus Susceptibility Interval1 , 2007, The Journal of Immunology.

[40]  Nichola Figg,et al.  Monocyte/Macrophage Suppression in CD11b Diphtheria Toxin Receptor Transgenic Mice Differentially Affects Atherogenesis and Established Plaques , 2007, Circulation research.

[41]  R. Homer,et al.  Transforming Growth Factor (TGF)-β1 Stimulates Pulmonary Fibrosis and Inflammation via a Bax-dependent, Bid-activated Pathway That Involves Matrix Metalloproteinase-12* , 2007, Journal of Biological Chemistry.

[42]  H. Osswald,et al.  Protective role of ecto-5'-nucleotidase (CD73) in renal ischemia. , 2007, Journal of the American Society of Nephrology : JASN.

[43]  B. Rollins,et al.  Critical Role of Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 in the Pathogenesis of Ischemic Cardiomyopathy , 2007, Circulation.

[44]  P. Libby,et al.  Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. , 2007, The Journal of clinical investigation.

[45]  B. Namjou,et al.  Genetics of clinical expression in SLE , 2007, Autoimmunity.

[46]  L. Marnell,et al.  C-Reactive Protein-Mediated Suppression of Nephrotoxic Nephritis: Role of Macrophages, Complement, and Fcγ Receptors1 , 2007, The Journal of Immunology.

[47]  S. Leibovich,et al.  Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. , 2006, Molecular biology of the cell.

[48]  F. Vrtovsnik,et al.  Fc alpha receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcR gamma adaptor. , 2007, European Journal of Immunology.

[49]  Yuanchao Zhang,et al.  Phase I Evaluation of the Safety, Pharmacokinetics and Pharmacodynamics of CP-481,715 , 2007, Clinical pharmacokinetics.

[50]  L. Marnell,et al.  C-reactive protein-mediated suppression of nephrotoxic nephritis: role of macrophages, complement, and Fcgamma receptors. , 2007, Journal of immunology.

[51]  E. Kokolina,et al.  Predictors of outcome in idiopathic rapidly progressive glomerulonephritis (IRPGN) , 2006, BMC nephrology.

[52]  C. Mohan,et al.  Regulation of B Cell Tolerance by the Lupus Susceptibility Gene Ly108 , 2006, Science.

[53]  R. Gomer,et al.  Aggregated IgG inhibits the differentiation of human fibrocytes , 2006, Journal of leukocyte biology.

[54]  E. Abraham,et al.  High mobility group box 1 protein interacts with multiple Toll-like receptors. , 2006, American journal of physiology. Cell physiology.

[55]  T. Wynn,et al.  Interleukin-5 (IL-5) Augments the Progression of Liver Fibrosis by Regulating IL-13 Activity , 2006, Infection and Immunity.

[56]  Enrico Petretto,et al.  Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans , 2006, Nature.

[57]  F. Schaefer,et al.  Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy. , 2006, Kidney international.

[58]  E. Vizi,et al.  Adenosine Augments IL-10 Production by Macrophages through an A2B Receptor-Mediated Posttranscriptional Mechanism1 , 2005, The Journal of Immunology.

[59]  John Savill,et al.  Resolution of inflammation: the beginning programs the end , 2005, Nature Immunology.

[60]  J. Duffield,et al.  Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. , 2005, The American journal of pathology.

[61]  A. Sica,et al.  Macrophage polarization comes of age. , 2005, Immunity.

[62]  O. Djurdjev,et al.  Glomerular monocytes predict worse outcomes after acute renal allograft rejection independent of C4d status. , 2005, Kidney international.

[63]  John D Lambris,et al.  C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist , 2005, European journal of immunology.

[64]  T. Moore,et al.  CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. , 2005, The American journal of pathology.

[65]  S. Forbes,et al.  Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. , 2005, The Journal of clinical investigation.

[66]  吉本 敬一 CD68 and MCP-1/CCR2 expression of initial biopsies reflect the outcomes of membranous nephropathy , 2005 .

[67]  Paul Martin,et al.  Wound healing and inflammation genes revealed by array analysis of 'macrophageless' PU.1 null mice , 2004, Genome Biology.

[68]  G. Haddad,et al.  Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? , 2004, American journal of respiratory cell and molecular biology.

[69]  P. Tipping,et al.  Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. , 2004, Kidney international.

[70]  F. Brombacher,et al.  Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. , 2004, Immunity.

[71]  Y. Kikuchi,et al.  Galectin-3-positive cell infiltration in human diabetic nephropathy. , 2004, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[72]  C. Alpers,et al.  J Am Soc Nephrol 15: 337–347, 2004 Chemokine Receptor CCR1 But Not CCR5 Mediates Leukocyte Recruitment and Subsequent Renal Fibrosis after Unilateral Ureteral , 2022 .

[73]  C. Haslett,et al.  Eat Me or Die , 2003, Science.

[74]  R. Gomer,et al.  Inhibition of Fibrocyte Differentiation by Serum Amyloid P 1 , 2003, The Journal of Immunology.

[75]  Christopher S. Poss,et al.  CP-481,715, a Potent and Selective CCR1 Antagonist with Potential Therapeutic Implications for Inflammatory Diseases* , 2003, Journal of Biological Chemistry.

[76]  R. Atkins,et al.  Macrophages act as effectors of tissue damage in acute renal allograft rejection , 2003, Transplantation.

[77]  S. Mckercher,et al.  Wound Healing in the PU.1 Null Mouse—Tissue Repair Is Not Dependent on Inflammatory Cells , 2003, Current Biology.

[78]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[79]  P. Carmeliet,et al.  Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. , 2003, Journal of the American Society of Nephrology : JASN.

[80]  D. Woodrow,et al.  The evolution of crescentic nephritis and alveolar haemorrhage following induction of autoimmunity to glomerular basement membrane in an experimental model of Goodpasture's disease , 2003, The Journal of pathology.

[81]  T. Vogl,et al.  Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. , 2003, Trends in immunology.

[82]  S. Fulda,et al.  Macrophages induce apoptosis in proximal tubule cells , 2003, Pediatric Nephrology.

[83]  V. Kelley,et al.  Reduced Macrophage Recruitment, Proliferation, and Activation in Colony-Stimulating Factor-1-Deficient Mice Results in Decreased Tubular Apoptosis During Renal Inflammation 1 , 2003, The Journal of Immunology.

[84]  J. Duffield The inflammatory macrophage , 2003 .

[85]  R. Atkins,et al.  Heterogeneity of antigen expression explains controversy over glomerular macrophage accumulation in mouse glomerulonephritis. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[86]  J. Duffield The inflammatory macrophage: a story of Jekyll and Hyde. , 2003, Clinical science.

[87]  K. Tokunaga,et al.  Studies on the association of Fcγ receptor IIA, IIB, IIIA and IIIB polymorphisms with rheumatoid arthritis in the Japanese: evidence for a genetic interaction between HLA-DRB1 and FCGR3A , 2002, Genes and Immunity.

[88]  P. Heeringa,et al.  Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. , 2002, The Journal of clinical investigation.

[89]  B. Thornhill,et al.  Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. , 2002, Kidney international.

[90]  C. Cohen,et al.  A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. , 2002, The Journal of clinical investigation.

[91]  C. Mandet,et al.  Proteinuria and tubulointerstitial lesions in lupus nephritis. , 2001, Kidney international.

[92]  Alan Aderem,et al.  Edinburgh Research Explorer Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state , 2001 .

[93]  K. Blenman,et al.  The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. V. Ravetch,et al.  IgG Fc receptors. , 2001, Annual review of immunology.

[95]  P. Rémy,et al.  A new morphologic index for the evaluation of renal biopsies in lupus nephritis. , 2000, Kidney international.

[96]  G. Bishop,et al.  Early up-regulation of macrophages and myofibroblasts: a new marker for development of chronic renal allograft rejection. , 2000, Transplantation.

[97]  R. Peach,et al.  CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. , 2000, The Journal of clinical investigation.

[98]  J. Duffield,et al.  Activated Macrophages Direct Apoptosis and Suppress Mitosis of Mesangial Cells1 , 2000, The Journal of Immunology.

[99]  R. Medzhitov,et al.  Innate immune recognition: mechanisms and pathways , 2000, Immunological reviews.

[100]  J Savill,et al.  Apoptosis in resolution of inflammation. , 2000, Kidney & blood pressure research.

[101]  H. Rabb,et al.  Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. , 1999, Kidney international.

[102]  M. Shlomchik,et al.  A Novel Mouse with B Cells but Lacking Serum Antibody Reveals an Antibody-independent Role for B Cells in Murine Lupus , 1999, The Journal of experimental medicine.

[103]  P. Tipping,et al.  Macrophage depletion by albumin microencapsulated clodronate: attenuation of cytokine release in macrophage-dependent glomerulonephritis. , 1999, Drug development and industrial pharmacy.

[104]  N. Kaminski,et al.  The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. , 1999, Cell.

[105]  S. Goerdt,et al.  Other functions, other genes: alternative activation of antigen-presenting cells. , 1999, Immunity.

[106]  B. Rollins,et al.  Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. , 1999, The Journal of clinical investigation.

[107]  O. Majdic,et al.  Identification of CD68+lin- peripheral blood cells with dendritic precursor characteristics. , 1998, Journal of immunology.

[108]  V. Cattell,et al.  Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. , 1998, Kidney international.

[109]  V. Fadok,et al.  Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. , 1998, The Journal of clinical investigation.

[110]  J. Ravetch,et al.  Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. , 1998, Science.

[111]  L. Armstrong,et al.  Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. , 1998, American journal of respiratory cell and molecular biology.

[112]  R. Kalluri,et al.  Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice. , 1997, The Journal of clinical investigation.

[113]  R. Atkins,et al.  Macrophage apoptosis in rat crescentic glomerulonephritis. , 1997, The American journal of pathology.

[114]  P. Tipping,et al.  Mechanisms of T cell‐induced glomerular injury in anti‐glomeruler basement membrane (GBM) glomerulonephritis in rats , 1997, Clinical and experimental immunology.

[115]  P. Tipping,et al.  Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. , 1997, Kidney international.

[116]  H. Ziegler-Heitbrock,et al.  Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. , 1996, Immunology today.

[117]  S. Horita,et al.  [Crescent formation in children with Henoch-Schönlein purpura nephritis: a pathological and immunohistochemical study]. , 1996, Nihon Jinzo Gakkai shi.

[118]  B. Rovin,et al.  Monocyte chemoattractant protein-1 levels in patients with glomerular disease. , 1996, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[119]  C. Alpers,et al.  Role of the complement membrane attack complex (C5b-9) in mediating experimental mesangioproliferative glomerulonephritis. , 1996, Kidney international.

[120]  T. Sternsdorf,et al.  Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. , 1996, Blood.

[121]  R. Atkins,et al.  Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. , 1995, Kidney international.

[122]  C. Alpers,et al.  Cellular proliferation and macrophage influx precede interstitial fibrosis in cyclosporine nephrotoxicity. , 1995, Kidney international.

[123]  J. Bonventre,et al.  Role of CD11a and CD11b in ischemic acute renal failure in rats. , 1994, The American journal of physiology.

[124]  W. Land,et al.  Early infiltration of renal allografts with 27E10‐positive macrophages and graft outcome , 1994, Transplant international : official journal of the European Society for Organ Transplantation.

[125]  R. Bucala,et al.  Circulating Fibrocytes Define a New Leukocyte Subpopulation That Mediates Tissue Repair , 1994, Molecular medicine.

[126]  H. van Goor,et al.  Macrophages and renal disease. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[127]  G. Mazzucco,et al.  Role of monocytes in cryoglobulinemia-associated nephritis. , 1993, Kidney international.

[128]  V. Fidler,et al.  Glomerular macrophage modulation affects mesangial expansion in the rat after renal ablation. , 1992, Laboratory investigation; a journal of technical methods and pathology.

[129]  A. Davidoff,et al.  MACROPHAGE SUBPOPULATIONS IN NORMAL AND TRANSPLANTED HEART AND KIDNEY TISSUES IN THE RAT1,2 , 1992, Transplantation.

[130]  S. Gordon,et al.  Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. , 1991, Development.

[131]  C. Janeway Approaching the asymptote? Evolution and revolution in immunology. , 1989, Cold Spring Harbor symposia on quantitative biology.

[132]  D. Serón,et al.  The role of interstitial infiltrates in IgA nephropathy: a study with monoclonal antibodies. , 1989, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[133]  D. Kaiser,et al.  T-cells and macrophages in rapidly progressive glomerulonephritis: clinicopathologic correlations. , 1987, Kidney international.

[134]  T. Wynn,et al.  IMMUNOPATHOLOGY OF SCHISTOSOMIASIS , 1987, The Lancet.

[135]  J. Cameron,et al.  Intraglomerular T cells and monocytes in nephritis: study with monoclonal antibodies. , 1987, Kidney international.

[136]  W. Vaughn,et al.  RENAL ALLOGRAFT CELL INFILTRATES ASSOCIATED WITH IRREVERSIBLE REJECTION , 1985, Transplantation.

[137]  C. Cardella,et al.  MONOCYTE PROCOAGULANT ACTIVITY AND PLASMINOGEN ACTIVATOR: ROLE IN HUMAN RENAL ALLOGRAFT REJECTION , 1985, Transplantation.

[138]  P. Tipping,et al.  Macrophage-induced glomerular fibrin deposition in experimental glomerulonephritis in the rabbit. , 1985, The Journal of clinical investigation.

[139]  S. Bertoli,et al.  The detection of monocytes in human glomerulonephritis. , 1985, Kidney international.

[140]  S. Lee,et al.  Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80 , 1985, The Journal of experimental medicine.

[141]  R. Atkins,et al.  Role of the macrophage in immunologically induced glomerulonephritis. , 1985, Contributions to nephrology.

[142]  D. Hume,et al.  Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. , 1983 .

[143]  Magil Ab,et al.  Monocyte involvement in glomerular crescents: a histochemical and ultrastructural study. , 1982 .

[144]  W. Keane,et al.  Renal disease in cryoglobulinemia type II: response to therapy. A case report and review of the literature. , 1982, American journal of nephrology.

[145]  R. Atkins,et al.  Involvement of the macrophage in experimental chronic immune complex glomerulonephritis. , 1982, Nephron.

[146]  R. Furth ORIGIN AND KINETICS OF MONONUCLEAR PHAGOCYTES , 1976 .

[147]  R. van Furth Macrophage activity and clinical immunology. Origin and kinetics of mononuclear phagocytes. , 1976, Annals of the New York Academy of Sciences.

[148]  R. van Furth,et al.  THE ORIGIN AND KINETICS OF MONONUCLEAR PHAGOCYTES , 1968, The Journal of experimental medicine.