Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution

The flexibility of individual proteins aids their evolutionary recruitment into complexes with increasing numbers of distinct subunits.

[1]  S. Teichmann,et al.  Probing the diverse landscape of protein flexibility and binding. , 2012, Current opinion in structural biology.

[2]  R. Nussinov,et al.  Extended disordered proteins: targeting function with less scaffold. , 2003, Trends in biochemical sciences.

[3]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[4]  M. Lynch Evolutionary diversification of the multimeric states of proteins , 2013, Proceedings of the National Academy of Sciences.

[5]  Yongqi Huang,et al.  Three‐dimensional domain swapping in the protein structure space , 2012, Proteins.

[6]  David Baker,et al.  Emergence of symmetry in homooligomeric biological assemblies , 2008, Proceedings of the National Academy of Sciences.

[7]  Charlotte M. Deane,et al.  What Evidence Is There for the Homology of Protein-Protein Interactions? , 2012, PLoS Comput. Biol..

[8]  R. Russell,et al.  The relationship between sequence and interaction divergence in proteins. , 2003, Journal of molecular biology.

[9]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[10]  T L Blundell,et al.  Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Sarah A. Teichmann,et al.  Relative Solvent Accessible Surface Area Predicts Protein Conformational Changes upon Binding , 2011, Structure.

[12]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[13]  Sarah A Teichmann,et al.  Evolution of protein complexes by duplication of homomeric interactions , 2007, Genome Biology.

[14]  A. Elofsson,et al.  What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? , 2006, Genome Biology.

[15]  S. Teichmann,et al.  Protein Complexes Are under Evolutionary Selection to Assemble via Ordered Pathways , 2013, Cell.

[16]  P. Tompa,et al.  The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. , 2005, Journal of molecular biology.

[17]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[18]  Christopher J. Oldfield,et al.  Exploring the binding diversity of intrinsically disordered proteins involved in one‐to‐many binding , 2013, Protein science : a publication of the Protein Society.

[19]  Gaston H. Gonnet,et al.  OMA 2011: orthology inference among 1000 complete genomes , 2010, Nucleic Acids Res..

[20]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[21]  M. Gerstein,et al.  Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. , 2004, Genome research.

[22]  Ruth Nussinov,et al.  Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. , 2004, Journal of molecular biology.

[23]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[24]  E I Shakhnovich,et al.  Structural similarity enhances interaction propensity of proteins. , 2006, Journal of molecular biology.

[25]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[26]  Michael Lynch,et al.  The evolution of multimeric protein assemblages. , 2012, Molecular biology and evolution.

[27]  Marc S. Cortese,et al.  Flexible nets , 2005, The FEBS journal.

[28]  C. Chothia Structural invariants in protein folding , 1975, Nature.

[29]  M. Vidal,et al.  Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". , 2001, Genome research.

[30]  Philip M. Kim,et al.  The role of disorder in interaction networks: a structural analysis , 2008, Molecular systems biology.

[31]  M. Albà,et al.  Inverse relationship between evolutionary rate and age of mammalian genes. , 2005, Molecular biology and evolution.

[32]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[33]  Pedro Beltrão,et al.  Specificity and Evolvability in Eukaryotic Protein Interaction Networks , 2007, PLoS Comput. Biol..

[34]  Joël Janin,et al.  Protein flexibility, not disorder, is intrinsic to molecular recognition , 2013, F1000 biology reports.

[35]  Lucy J. Colwell,et al.  The emergence of protein complexes: quaternary structure, dynamics and allostery. Colworth Medal Lecture. , 2012, Biochemical Society transactions.

[36]  Guilhem Faure,et al.  Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces , 2012, PLoS Comput. Biol..

[37]  Benjamin A. Shoemaker,et al.  Evolution of protein binding modes in homooligomers. , 2010, Journal of molecular biology.

[38]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[39]  S. Teichmann,et al.  Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  M. Sternberg,et al.  Insights into protein flexibility: The relationship between normal modes and conformational change upon protein–protein docking , 2008, Proceedings of the National Academy of Sciences.

[41]  J. Janin,et al.  Protein–protein interaction and quaternary structure , 2008, Quarterly Reviews of Biophysics.

[42]  J. Janin,et al.  Reassessing buried surface areas in protein–protein complexes , 2013, Protein science : a publication of the Protein Society.

[43]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[44]  Haruki Nakamura,et al.  Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks , 2006, FEBS letters.

[45]  A J Olson,et al.  Structural symmetry and protein function. , 2000, Annual review of biophysics and biomolecular structure.

[46]  S. Teichmann,et al.  Assembly reflects evolution of protein complexes , 2008, Nature.

[47]  Peter Tompa,et al.  Structural disorder promotes assembly of protein complexes , 2007, BMC Structural Biology.

[48]  Emmanuel D Levy,et al.  PiQSi: protein quaternary structure investigation. , 2007, Structure.

[49]  István Simon,et al.  Malleable Machines in Transcription Regulation: The Mediator Complex , 2008, PLoS Comput. Biol..

[50]  C. Chothia,et al.  Evolution of oligomeric state through geometric coupling of protein interfaces , 2012, Proceedings of the National Academy of Sciences.

[51]  K. Namba Roles of partly unfolded conformations in macromolecular self‐assembly , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[52]  S. Teichmann,et al.  The Role of Salt Bridges, Charge Density, and Subunit Flexibility in Determining Disassembly Routes of Protein Complexes , 2013, Structure.

[53]  Sarah A. Teichmann,et al.  3D Complex: A Structural Classification of Protein Complexes , 2006, PLoS Comput. Biol..

[54]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[55]  J. Marsh Buried and accessible surface area control intrinsic protein flexibility. , 2013, Journal of molecular biology.

[56]  P. Sparén,et al.  Efficiency of organised and opportunistic cytological screening for cancer in situ of the cervix , 1995, British Journal of Cancer.

[57]  D. Tautz,et al.  An evolutionary analysis of orphan genes in Drosophila. , 2003, Genome research.

[58]  Ariel Fernández,et al.  Nonadaptive origins of interactome complexity , 2011, Nature.

[59]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[60]  E. Shakhnovich,et al.  Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations , 2011, Proceedings of the National Academy of Sciences.

[61]  Cyrus Chothia,et al.  The accessible surface area and stability of oligomeric proteins , 1987, Nature.

[62]  Berend Snel,et al.  Protein Complex Evolution Does Not Involve Extensive Network Rewiring , 2008, PLoS Comput. Biol..