Discovery of WASP-113b and WASP-114b, two inflated hot-Jupiters with contrasting densities

Aims. We present the discovery and characterisation of the exoplanets WASP-113b and WASP-114b by the WASP survey, SOPHIE and CORALIE. Methods. The planetary nature of the systems was established by performing follow-up photometric and spectroscopic observations. The follow-up data were combined with the WASP-photometry and analysed with an MCMC code to obtain system parameters. Results. The host stars WASP-113 and WASP-114 are very similar. They are both early G-type stars with an effective temperature of ∼ 5900 K, [Fe/H]∼ 0.12 and log g ∼ 4.1dex. However, WASP-113 is older than WASP-114. Although the planetary companions have similar radii, WASP-114b is almost 4 times heavier than WASP-113b. WASP-113b has a mass of 0.48 MJup and an orbital period of ∼ 4.5 days; WASP-114b has a mass of 1.77 MJupand an orbital period of ∼ 1.5 days. Both planets have inflated radii, in particular WASP-113 with a radius anomaly of R = 0.35. The high scale height of WASP-113b (∼ 950 km ) makes it a good target for follow-up atmospheric observations.

[1]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[2]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[3]  Inga Kamp,et al.  European Physical Journal Web of Conferences , 2015 .

[4]  Thierry Forveille,et al.  The SOPHIE search for northern extrasolar planets . I. A companion around HD 16760 with mass close to the planet/brown-dwarf transition , 2009 .

[5]  D. Queloz,et al.  TRAPPIST: a robotic telescope dedicated to the study of planetary systems , 2011, 1101.5807.

[6]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[7]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[8]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[9]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[10]  Gregory Laughlin,et al.  ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS , 2011, 1101.5827.

[11]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[12]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[13]  B. Warner Initial Results of a Dedicated H-G Project , 2007 .

[14]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[15]  Coventry,et al.  A search for photometric variability towards M71 with the Near-Infrared Transiting ExoplanetS Telescope , 2013, 1312.5880.

[16]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[17]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[18]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[19]  J. Fortney,et al.  RE-INFLATED WARM JUPITERS AROUND RED GIANTS , 2015, 1510.00067.

[20]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[21]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[22]  Konstantin Batygin,et al.  EVOLUTION OF OHMICALLY HEATED HOT JUPITERS , 2011, 1101.3800.

[23]  A. Cameron,et al.  Accurate spectroscopic parameters of WASP planet host stars , 2012, 1210.5931.

[24]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[25]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[26]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[27]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[28]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[29]  Steven Soter,et al.  Q in the solar system , 1966 .

[30]  S. C. C. Barros,et al.  New planetary and eclipsing binary candidates from campaigns 1−6 of the K2 mission , 2016, 1607.02339.

[31]  Sara Seager,et al.  LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION , 2011, 1110.6180.

[32]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[33]  L. B. Lucy,et al.  Spectroscopic binaries with circular orbits , 1973 .

[34]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[35]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[36]  A. Burrows,et al.  THERMAL PROCESSES GOVERNING HOT-JUPITER RADII , 2013, 1303.0293.

[37]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[38]  R. G. West,et al.  WASP-42 b and WASP-49 b: two new transiting sub-Jupiters , 2012, 1205.2757.

[39]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[40]  R. W. Noyes,et al.  A trend filtering algorithm for wide-field variability surveys , 2004 .

[41]  C. Moutou,et al.  The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246 , 2010, 1006.4984.

[42]  W. Chaplin,et al.  Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler , 2014, 1408.3988.

[43]  D. Brown Discrepancies between isochrone fitting and gyrochronology for exoplanet host stars , 2014, 1406.4402.

[44]  Spain.,et al.  A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars , 2015, 1503.09111.

[45]  R. G. West,et al.  WASP-38b: a transiting exoplanet in an eccentric, 6.87d period orbit , 2010, 1010.0849.

[46]  A. Collier Cameron,et al.  An improved method for estimating the masses of stars with transiting planets , 2010, 1004.1991.

[47]  S. Barnes,et al.  ANGULAR MOMENTUM LOSS FROM COOL STARS: AN EMPIRICAL EXPRESSION AND CONNECTION TO STELLAR ACTIVITY , 2010, 1104.2350.

[48]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[49]  Jean Manfroid,et al.  TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope , 2011 .

[50]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[51]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[52]  E. K. Simpson,et al.  A lower mass for the exoplanet WASP‐21b , 2011, 1106.2118.

[53]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[54]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[55]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[56]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[57]  A. Collier Cameron,et al.  A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.

[58]  Howard Isaacson,et al.  THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX , 2013, 1303.2150.

[59]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[60]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[61]  R. G. West,et al.  WASP-3b: a strongly irradiated transiting gas-giant planet , 2007, 0711.0126.

[62]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .