The fungicidal activity of amphotericin B requires autophagy-dependent targeting to the vacuole under a nutrient-starved condition in Saccharomyces cerevisiae.

In this study, we demonstrated that in distilled water, a nutrient-starved condition that elicits autophagy in Saccharomyces cerevisiae, an array of autophagy-deficient mutants are resistant to the fungicidal effects of amphotericin B. In addition, we found that a dansyl-labelled derivative of the antibiotic colocalized with disintegrated vacuoles throughout the cytoplasm in the amphotericin B-sensitive parental strain suspended in distilled water. In contrast, the dansyl-labelled derivative was not internalized in the Δatg18 strain, which is deficient in the formation of autophagosomes, a key early step in autophagy. However, the derivative accumulated without significant toxicity in structurally intact vacuoles in the Δvma1 mutant, which is deficient in the degradation of autophagic bodies, the final stage in autophagy. Our data support the idea that amphotericin B can utilize autophagy-dependent trafficking into the intra-vacuolar lumen, where it interacts with the luminal leaf of the membrane to cause structurally catastrophic effects.

[1]  Andrew J. Nieuwkoop,et al.  Amphotericin forms an extramembranous and fungicidal sterol sponge , 2014, Nature chemical biology.

[2]  D. Klionsky,et al.  Autophagic Processes in Yeast: Mechanism, Machinery and Regulation , 2013, Genetics.

[3]  Ken-Ichi Fujita,et al.  Visualization analysis of the vacuole-targeting fungicidal activity of amphotericin B against the parent strain and an ergosterol-less mutant of Saccharomyces cerevisiae. , 2013, Microbiology.

[4]  B. Campbell,et al.  Enhancement of Antimycotic Activity of Amphotericin B by Targeting the Oxidative Stress Response of Candida and Cryptococcus with Natural Dihydroxybenzaldehydes , 2012, Front. Microbio..

[5]  Ken-Ichi Fujita,et al.  Enhancing Effects on Vacuole-Targeting Fungicidal Activity of Amphotericin B , 2012, Front. Microbio..

[6]  Ken-Ichi Fujita,et al.  Dependence of vacuole disruption and independence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae , 2010, The Journal of Antibiotics.

[7]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[8]  D. Kelly,et al.  A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B , 2010, Antimicrobial Agents and Chemotherapy.

[9]  Ken-Ichi Fujita,et al.  The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin , 2009, The Journal of Antibiotics.

[10]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[11]  Y. Ohsumi,et al.  The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function* , 2008, Journal of Biological Chemistry.

[12]  M. Taniguchi,et al.  Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. , 2006, Planta medica.

[13]  G. Quindós,et al.  Antifungal agents: mode of action in yeast cells. , 2006, Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.

[14]  H. Riezman,et al.  Where sterols are required for endocytosis. , 2004, Biochimica et biophysica acta.

[15]  J. Heitman,et al.  Disruption of Ergosterol Biosynthesis Confers Resistance to Amphotericin B in Candida lusitaniae , 2003, Antimicrobial Agents and Chemotherapy.

[16]  M. Taniguchi,et al.  Synergistic combination of direct plasma membrane damage and oxidative stress as a cause of antifungal activity of polyol macrolide antibiotic niphimycin. , 2002, Journal of bioscience and bioengineering.

[17]  W. Wickner,et al.  Ergosterol is required for the Sec18/ATP‐dependent priming step of homotypic vacuole fusion , 2001, The EMBO journal.

[18]  A. Matsuura,et al.  Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. , 1997, Journal of biochemistry.

[19]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[20]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.

[21]  D. Feingold,et al.  Dissociation Between Ion Permeability and the Lethal Action of Polyene Antibiotics on Candida albicans , 1978, Antimicrobial Agents and Chemotherapy.

[22]  Ken-Ichi Fujita,et al.  Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans , 2011, The Journal of Antibiotics.

[23]  Keiji Matsumoto,et al.  Synergistic Fungicidal Activities of Amphotericin B and N-Methyl-N″-dodecylguanidine: A Constituent of Polyol Macrolide Antibiotic Niphimycin , 2007, The Journal of Antibiotics.

[24]  G. Andrés,et al.  Antifúngicos: mecanismo de acción en células de levaduras , 2006 .

[25]  Maciej Baginski,et al.  Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. , 2005, Acta biochimica Polonica.

[26]  S. Kelly,et al.  Investigation into the molecular mechanisms of itraconazole resistance in Candida dubliniensis , 2003 .

[27]  M. Szcześniak,et al.  [Determination of potassium salt content in pharmaceutical preparations by means of sodium tetraphenylborate]. , 1967, Acta poloniae pharmaceutica.