ATP Synthesis-coupled and -uncoupled Acetate Production from Acetyl-CoA by Mitochondrial Acetate:Succinate CoA-transferase and Acetyl-CoA Thioesterase in Trypanosoma*

Background: Mitochondrial acetate production is essential for viability of the procyclic trypanosomes and probably many other protists. Results: We identified an acetyl-CoA thioesterase (ACH) contributing to acetate production from acetyl-CoA. Conclusion: Acetate production by ASCT, but not by ACH, is involved in ATP production. Significance: In trypanosomes and probably other protists, ASCT/SCoAS cycle-derived ATP production can substitute for oxidative phosphorylation. Insect stage trypanosomes use an “acetate shuttle” to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F0/F1-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F0/F1-ATP synthase F1β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F0/F1-ATP synthase, for ATP production in the mitochondrion.

[1]  S. Beverley,et al.  Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. , 2003, Molecular and biochemical parasitology.

[2]  T. Pandolfini,et al.  Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection , 2003, BMC biotechnology.

[3]  J. F. Ryley Studies on the metabolism of the protozoa. 4. Metabolism of the parasitic flagellate Strigomonas oncopelti. , 1955, The Biochemical journal.

[4]  D. S. Beattie,et al.  Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. , 2002, Molecular and biochemical parasitology.

[5]  D. Moreira,et al.  An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. , 2004, International journal of systematic and evolutionary microbiology.

[6]  N. Williams,et al.  The mitochondrial ATP synthase of Trypanosoma brucei: isolation and characterization of the intact F1 moiety. , 1990, Molecular and biochemical parasitology.

[7]  E Pays,et al.  The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. , 2001, Molecular and biochemical parasitology.

[8]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[9]  Alisdair R Fernie,et al.  Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.012500. , 2003, The Plant Cell Online.

[10]  Eileen Kraemer,et al.  TriTrypDB: a functional genomic resource for the Trypanosomatidae , 2009, Nucleic Acids Res..

[11]  B. Vanhollebeke,et al.  The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill , 2010, Molecular microbiology.

[12]  J. Macy,et al.  Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium , 1990, Journal of bacteriology.

[13]  C. Hung,et al.  Development of RNA interference revertants in Trypanosoma brucei cell lines generated with a double stranded RNA expression construct driven by two opposing promoters. , 2003, Molecular and biochemical parasitology.

[14]  J. Williamson,et al.  The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. , 1970, Comparative biochemistry and physiology.

[15]  O. Herzberg,et al.  PYRUVATE PHOSPHATE DIKINASE , 1996 .

[16]  R. E. Austic,et al.  Characterization of hepatic L-threonine dehydrogenase of chicken. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[17]  S. Moestrup,et al.  Mechanism of Trypanosoma brucei gambiense resistance to human serum , 2013, Nature.

[18]  J. Donelson,et al.  Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. , 2004, Molecular and biochemical parasitology.

[19]  H. Y. Steensma,et al.  The Two Acetyl-coenzyme A Synthetases of Saccharomyces cerevisiae Differ with Respect to Kinetic Properties and Transcriptional Regulation* , 1996, The Journal of Biological Chemistry.

[20]  A. Schnaufer,et al.  Identification of novel components of Trypanosoma brucei editosomes. , 2003, RNA.

[21]  Michael A. J. Ferguson,et al.  Comparative SILAC Proteomic Analysis of Trypanosoma brucei Bloodstream and Procyclic Lifecycle Stages , 2012, PLoS ONE.

[22]  Achim Schnaufer,et al.  Complex management: RNA editing in trypanosomes. , 2005, Trends in biochemical sciences.

[23]  W. Konings,et al.  Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products , 1979 .

[24]  K. Gull,et al.  Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Djikeng,et al.  In vivo analysis of the RNA interference mechanism in Trypanosoma brucei. , 2003, Methods.

[26]  E. Ullu,et al.  Comparative Genomics Reveals Two Novel RNAi Factors in Trypanosoma brucei and Provides Insight into the Core Machinery , 2012, PLoS pathogens.

[27]  G. Hannon,et al.  Conserved themes in small-RNA-mediated transposon control. , 2008, Trends in cell biology.

[28]  F. Bringaud,et al.  The characterization and evolutionary relationships of a trypanosomal thiolase. , 2011, International journal for parasitology.

[29]  D. Legros,et al.  Trypanosomiase humaine africaine: historique de la thérapeutique et de ses échecs , 2001 .

[30]  A. Tielens,et al.  Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei , 2006, FEBS letters.

[31]  S. Gygi,et al.  Association of Two Novel Proteins, TbMP52 and TbMP48, with the Trypanosoma brucei RNA Editing Complex , 2001, Molecular and Cellular Biology.

[32]  B. Crabtree,et al.  Measurement of the rates of acetyl-CoA hydrolysis and synthesis from acetate in rat hepatocytes and the role of these fluxes in substrate cycling. , 1990, The Biochemical journal.

[33]  W. Konings,et al.  Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli. , 2005, European journal of biochemistry.

[34]  Isabel M. Vincent,et al.  The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control , 2013, Molecular microbiology.

[35]  M. Phillips,et al.  Product feedback regulation implicated in translational control of the Trypanosoma brucei S‐adenosylmethionine decarboxylase regulatory subunit prozyme , 2013, Molecular microbiology.

[36]  R. Grady,et al.  Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. , 1989, The Journal of biological chemistry.

[37]  J. Donelson,et al.  The Genome of the African Trypanosome , 2002 .

[38]  R. Ramsay,et al.  The mechanism of fatty acid uptake by heart mitochondria: An acylcarnitine‐carnitine exchange , 1975, FEBS letters.

[39]  A. Samad,et al.  The acquisition of lipids by African trypanosomes. , 1989, Parasitology today.

[40]  Y. Lacasse,et al.  From the authors , 2005, European Respiratory Journal.

[41]  Ronald H. A. Plasterk,et al.  RNA Silencing: The Genome's Immune System , 2002, Science.

[42]  P. T. Englund,et al.  Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. , 2000, Science.

[43]  P. T. Englund,et al.  Mitochondrial Fatty Acid Synthesis in Trypanosoma brucei* , 2007, Journal of Biological Chemistry.

[44]  I. Coppens,et al.  The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. , 2000, Annual review of microbiology.

[45]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[46]  G. Sawers,et al.  Novel keto acid formate‐lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L‐threonine to propionate , 1998, Molecular microbiology.

[47]  F. Bringaud,et al.  Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei. , 1995, Molecular and biochemical parasitology.

[48]  S. Brody,et al.  Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae , 1997, FEBS letters.

[49]  D. Rentsch,et al.  A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses. , 2013, The Biochemical journal.

[50]  A. Heape,et al.  Improved one-dimensional thin-layer chromatographic technique for polar lipids. , 1985, Journal of chromatography.

[51]  S. Busby,et al.  Regulation of Acetyl Coenzyme A Synthetase inEscherichia coli , 2000, Journal of bacteriology.

[52]  R. Ott,et al.  Trypanosome alternative oxidase: from molecule to function. , 2006, Trends in parasitology.

[53]  P. Borst,et al.  A ribosomal RNA gene promoter at the telomere of a mini-chromosome in Trypanosoma brucei. , 1992, Nucleic acids research.

[54]  M. Huynen,et al.  A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. , 2000, Molecular biology and evolution.

[55]  K. Gull,et al.  A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. , 2003, Molecular biology of the cell.

[56]  F. Opperdoes,et al.  Complex I of Trypanosomatidae: does it exist? , 2008, Trends in parasitology.

[57]  W. Martin,et al.  Acetate formation in the energy metabolism of parasitic helminths and protists. , 2010, International journal for parasitology.

[58]  D. Rice,et al.  Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. , 2003, Molecular and biochemical parasitology.

[59]  C. Napoli,et al.  Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. , 1990, The Plant cell.

[60]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[61]  J. Ohlrogge,et al.  Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Wyllie,et al.  Comparative proteomics profiling of a gentamicin-attenuated Leishmania infantum cell line identifies key changes in parasite thiol-redox metabolism. , 2012, Journal of proteomics.

[63]  F. Opperdoes,et al.  Subcellular compartmentation of glycolytic intermediates in Trypanosoma brucei. , 1981, European journal of biochemistry.

[64]  M. Hunt,et al.  The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. , 2002, Progress in lipid research.

[65]  L. V. D. van der Ploeg,et al.  Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei , 1991, Molecular and cellular biology.

[66]  G. Murphy A story of mice and men: SCID mouse-human skin chimeras in immunology research. , 1996, The Journal of investigative dermatology.

[67]  J. Barry,et al.  An update on antigenic variation in African trypanosomes. , 2001, Trends in parasitology.

[68]  J. Lohmann,et al.  Silencing of developmental genes in Hydra. , 1999, Developmental biology.

[69]  H. Voorheis Fatty acid uptake by bloodstream forms of Trypanosoma brucei and other species of the kinetoplastida. , 1980, Molecular and biochemical parasitology.

[70]  P. Myler,et al.  A comprehensive analysis of Trypanosoma brucei mitochondrial proteome , 2009, Proteomics.

[71]  Frédéric Bringaud,et al.  A Mitochondrial NADH-dependent Fumarate Reductase Involved in the Production of Succinate Excreted by Procyclic Trypanosoma brucei* , 2005, Journal of Biological Chemistry.

[72]  Michael Y. Galperin,et al.  Acetyl-CoA Synthetase from the Amitochondriate EukaryoteGiardia lamblia Belongs to the Newly Recognized Superfamily of Acyl-CoA Synthetases (Nucleoside Diphosphate-forming)* , 2000, The Journal of Biological Chemistry.

[73]  M. Engstler,et al.  Endocytosis, membrane recycling and sorting of GPI‐anchored proteins: Trypanosoma brucei as a model system , 2004, Molecular microbiology.

[74]  Daniela Degenring,et al.  Discrete event, multi-level simulation of metabolite channeling. , 2004, Bio Systems.

[75]  K. Paul,et al.  Requirement for acetyl‐CoA carboxylase in Trypanosoma brucei is dependent upon the growth environment , 2011, Molecular microbiology.

[76]  F. Brohn,et al.  Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate catabolism. , 1976, Science.

[77]  C. Clayton,et al.  Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. , 1991, Molecular and biochemical parasitology.

[78]  T. Osaki,et al.  Correlation of plasma amino acid concentrations and chondroprotective effects of glucosamine and fish collagen peptide on the development of osteoarthritis. , 2013, The Journal of veterinary medical science.

[79]  G. Mitchell,et al.  Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. , 2004, Prostaglandins, leukotrienes, and essential fatty acids.

[80]  N. Biteau,et al.  Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition. , 2000, Molecular and biochemical parasitology.

[81]  P. Myler,et al.  Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit , 1992, Molecular and cellular biology.

[82]  Marilyn Parsons,et al.  Glucose is toxic to glycosome-deficient trypanosomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Barry The relative significance of mechanisms of antigenic variation in African trypanosomes. , 1997, Parasitology today.

[84]  A. Günzl The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified? , 2010, Eukaryotic Cell.

[85]  M. Hunt,et al.  Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism. , 2008, Progress in lipid research.

[86]  R. Leoncini,et al.  Rat liver L-threonine deaminase: Properties and purification , 1985, Bioscience reports.

[87]  P. Overath,et al.  Trypanosoma brucei: cis-aconitate and temperature reduction as triggers of synchronous transformation of bloodstream to procyclic trypomastigotes in vitro. , 1986, Experimental parasitology.

[88]  G. Cross,et al.  Epigenetic regulation in African trypanosomes: a new kid on the block , 2009, Nature Reviews Microbiology.

[89]  H. Holms,et al.  Flux analysis and control of the central metabolic pathways in Escherichia coli. , 1996, FEMS microbiology reviews.

[90]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[91]  M. Lehane,et al.  The Enemy Within: Interactions Between Tsetse, Trypanosomes and Symbionts , 2009 .

[92]  K. Gull Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. , 2003, Current opinion in microbiology.

[93]  F. Voncken,et al.  Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei , 2006, Proteomics.

[94]  K. Ersfeld Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. , 2011, Research in microbiology.

[95]  E. Padlan,et al.  Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. , 1988, The Journal of biological chemistry.

[96]  F. Opperdoes,et al.  Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. , 2004, Biochemical pharmacology.

[97]  F. Bringaud,et al.  Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes , 2009, Parasitology.

[98]  J. Poulain,et al.  Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite , 2011, Genome Biology.

[99]  Jennifer L. Guler,et al.  The 3‐hydroxyacyl‐ACP dehydratase of mitochondrial fatty acid synthesis in Trypanosoma brucei , 2008, FEBS letters.

[100]  G. Cross,et al.  Trypanosoma brucei , 1998 .

[101]  C. Hackenbrock,et al.  Continuous measurement of adenosine triphosphate with firefly luciferase luminescence. , 1979, Methods in enzymology.

[102]  F. Opperdoes,et al.  The phosphoglycerate kinases from Trypanosoma brucei. A comparison of the glycosomal and the cytosolic isoenzymes and their sensitivity towards suramin. , 1987, European journal of biochemistry.

[103]  Shulamit Michaeli,et al.  Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[104]  K. Tanaka,et al.  Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. , 1983, The Journal of biological chemistry.

[105]  G. Nogge Sterility in tsetse flies (Glossina morsitans Westwood) caused by loss of symbionts , 1976, Experientia.

[106]  Marcela Ferella,et al.  Farnesyl diphosphate synthase localizes to the cytoplasm of Trypanosoma cruzi and T. brucei. , 2008, Experimental parasitology.

[107]  E. Ullu,et al.  Trans splicing in trypanosomes requires methylation of the 5' end of the spliced leader RNA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[108]  André Schneider,et al.  Mitochondrial Substrate Level Phosphorylation Is Essential for Growth of Procyclic Trypanosoma brucei * , 2002, The Journal of Biological Chemistry.

[109]  Markus Engstler,et al.  Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. , 2004, Genes & development.

[110]  L. Tabernero,et al.  Protein tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation in trypanosomes , 2006, The Journal of cell biology.

[111]  L. Barantin,et al.  Concentration Measurement by Proton NMR Using the ERETIC Method. , 1999, Analytical chemistry.

[112]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[113]  D. Hough,et al.  Dihydrolipoamide dehydrogenase in the trypanosoma subgenus, trypanozoon. , 1994, Molecular and biochemical parasitology.

[114]  Frédéric Bringaud,et al.  Energy metabolism of trypanosomatids: adaptation to available carbon sources. , 2006, Molecular and biochemical parasitology.

[115]  E. Ullu,et al.  RNA Interference in Protozoan Parasites: Achievements and Challenges , 2011, Eukaryotic Cell.

[116]  N. Hooper,et al.  Surface Coat Remodeling during Differentiation of Trypanosoma brucei* , 2003, Journal of Biological Chemistry.

[117]  C. Hall Acyl-CoA dehydrogenases and electron-transferring flavoprotein. , 1978, Methods in Enzymology.

[118]  Ela Hunt,et al.  Visualisation and analysis of proteomic data from the procyclic form of Trypanosoma brucei , 2006, Proteomics.

[119]  C. Clayton,et al.  Life without transcriptional control? From fly to man and back again , 2002, The EMBO journal.

[120]  N. Biteau,et al.  Succinate Secreted by Trypanosoma brucei Is Produced by a Novel and Unique Glycosomal Enzyme, NADH-dependent Fumarate Reductase , 2002, The Journal of Biological Chemistry.

[121]  A. Schnaufer,et al.  Enigmatic Presence of Mitochondrial Complex I in Trypanosoma brucei Bloodstream Forms , 2011, Eukaryotic Cell.

[122]  D. Toke,et al.  Isolation and Characterization of a Gene Affecting Fatty Acid Elongation in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[123]  M. Wink The endosymbionts of Glossina morsitans and G. palpalis: cultivation experiments and some physiological properties. , 1979, Acta tropica.

[124]  Magdalena Zernicka-Goetz,et al.  Specific interference with gene function by double-stranded RNA in early mouse development , 2000, Nature Cell Biology.

[125]  Ian R. Booth,et al.  Perturbation of Anion Balance during Inhibition of Growth of Escherichia coli by Weak Acids , 1998, Journal of bacteriology.

[126]  R. Grady,et al.  Trypanosome alternative oxidase , 1990 .

[127]  I. Bowman,et al.  Metabolism of proline by the culture midgut form of Trypanosoma rhodesiense. , 1973, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[128]  A. Fairlamb,et al.  Surface receptors and transporters of Trypanosoma brucei. , 1998, Annual review of microbiology.

[129]  Jean-Pierre Szikora,et al.  Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. , 2008, Molecular and biochemical parasitology.

[130]  S. Lips,et al.  Characterization of a transcription terminator of the procyclin PARP A unit of Trypanosoma brucei , 1996, Molecular and cellular biology.

[131]  R. Klein,et al.  Threonine as a perferred source of 2-carbon units for lipid synthesis in Trypanosoma brucei. , 1976, Biochemical Society transactions.

[132]  K. Bateman,et al.  Structure of the mammalian CoA transferase from pig heart. , 2002, Biochemistry.

[133]  Y Takamura,et al.  Changes in size of intracellular pools of coenzyme A and its thioesters in Escherichia coli K-12 cells to various carbon sources and stresses. , 1998, Bioscience, biotechnology, and biochemistry.

[134]  F. Opperdoes,et al.  New Functions for Parts of the Krebs Cycle in Procyclic Trypanosoma brucei, a Cycle Not Operating as a Cycle* , 2005, Journal of Biological Chemistry.

[135]  R. Perham,et al.  Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. , 2000, Annual review of biochemistry.

[136]  W. Dougherty,et al.  Transgenes and gene suppression: telling us something new? , 1995, Current opinion in cell biology.

[137]  E. Ullu,et al.  RNA interference in protozoan parasites , 2004, Cellular microbiology.

[138]  D. Horn,et al.  Nuclear gene transcription and chromatin in Trypanosoma brucei. , 2001, International journal for parasitology.

[139]  R. Klein,et al.  Carbon dioxide fixation in trypanosomatids , 1975, Parasitology.

[140]  J. Escalante‐Semerena,et al.  Acetyl-coenzyme A synthetase (AMP forming) , 2004, Cellular and Molecular Life Sciences CMLS.

[141]  L. Cynober Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. , 2002, Nutrition.

[142]  R. Brun,et al.  Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. , 1991, Molecular and biochemical parasitology.

[143]  T. Ochsenreiter,et al.  Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity , 2006, EMBO reports.

[144]  L. Sperling,et al.  Transgene-mediated post-transcriptional gene silencing is inhibited by 3' non-coding sequences in Paramecium. , 2001, Nucleic acids research.

[145]  J. Williamson,et al.  The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. , 1971, Comparative biochemistry and physiology. B, Comparative biochemistry.

[146]  S. Melville,et al.  Nuclear and genome organization of Trypanosoma brucei. , 1999, Parasitology today.

[147]  F. Opperdoes,et al.  Glycolysis in Trypanosoma brucei. , 1980, European journal of biochemistry.

[148]  Frédéric Bringaud,et al.  Alanine aminotransferase of Trypanosoma brucei– a key role in proline metabolism in procyclic life forms , 2009, The FEBS journal.

[149]  M. Barrett,et al.  Metabolomic analysis of trypanosomatid protozoa. , 2012, Molecular and biochemical parasitology.

[150]  S. Baserga,et al.  The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. , 2000, Nucleic acids research.

[151]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[152]  P. Borst,et al.  Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei , 1991, Nature.

[153]  G. L. Kenyon,et al.  Cross-linking of the enzymes in the glycosome of Trypanosoma brucei. , 1985, The Journal of biological chemistry.

[154]  W. Gibson,et al.  Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. , 2003, Advances in parasitology.

[155]  J. Raper,et al.  Evidence for a Trypanosoma brucei Lipoprotein Scavenger Receptor* , 2003, The Journal of Biological Chemistry.

[156]  Anton P. McCaffrey,et al.  A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice , 2003, Hepatology.

[157]  M. Barrett,et al.  Glucose-induced Remodeling of Intermediary and Energy Metabolism in Procyclic Trypanosoma brucei* , 2008, Journal of Biological Chemistry.

[158]  Jean-Charles Portais,et al.  Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux* , 2013, The Journal of Biological Chemistry.

[159]  K. Matthews,et al.  A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. , 2010, Genes & development.

[160]  K. Gull,et al.  The trypanosome flagellum , 2003, Journal of Cell Science.

[161]  N. Suematsu,et al.  Simple and unique purification by size-exclusion chromatography for an oligomeric enzyme, rat liver cytosolic acetyl-coenzyme A hydrolase. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[162]  Peter Rohloff,et al.  Acidocalcisomes ? conserved from bacteria to man , 2005, Nature Reviews Microbiology.

[163]  K. Gable,et al.  Tsc13p Is Required for Fatty Acid Elongation and Localizes to a Novel Structure at the Nuclear-Vacuolar Interface inSaccharomyces cerevisiae , 2001, Molecular and Cellular Biology.

[164]  R. Carthew,et al.  Use of dsRNA-Mediated Genetic Interference to Demonstrate that frizzled and frizzled 2 Act in the Wingless Pathway , 1998, Cell.

[165]  M. Barrett,et al.  Trypanosome glucose transporters. , 1998, Molecular and biochemical parasitology (Print).

[166]  H. Veldkamp,et al.  Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris , 1982, Journal of bacteriology.

[167]  G. Cross,et al.  Threonine catabolism in Trypanosoma brucei. , 1977, Journal of general microbiology.

[168]  N. Agabian Trans splicing of nuclear pre-mRNAs , 1990, Cell.

[169]  Frédéric Bringaud,et al.  Acetyl:Succinate CoA-transferase in Procyclic Trypanosoma brucei , 2004, Journal of Biological Chemistry.

[170]  E. Ullu,et al.  An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. , 2006, RNA.

[171]  G. Mannaerts,et al.  Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. , 1979, The Journal of biological chemistry.

[172]  M. Metzlaff,et al.  RNA-Mediated RNA Degradation and Chalcone Synthase A Silencing in Petunia , 1997, Cell.

[173]  A. Wolfe The Acetate Switch , 2005, Microbiology and Molecular Biology Reviews.

[174]  M. Barrett,et al.  Multiple roles of proline transport and metabolism in trypanosomatids. , 2012, Frontiers in bioscience.

[175]  Barbara M. Bakker,et al.  The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. , 2006, Molecular and biochemical parasitology.

[176]  J. Morris Utilization of L-threnonine by a pseudomonad: a catabolic role for L-threonine aldolase. , 1969, The Biochemical journal.

[177]  Terry K. Smith,et al.  Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei , 2010, Parasitology.

[178]  J. Rochet,et al.  Identification of glutamate 344 as the catalytic residue in the active site of pig heart CoA transferase , 1994, Protein science : a publication of the Protein Society.

[179]  Peter J. Schaap,et al.  Molecular characterization of the , 1997 .

[180]  K. Gable,et al.  Members of the Arabidopsis FAE1-like 3-Ketoacyl-CoA Synthase Gene Family Substitute for the Elop Proteins of Saccharomyces cerevisiae* , 2006, Journal of Biological Chemistry.

[181]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[182]  Frédéric Bringaud,et al.  Fumarate Is an Essential Intermediary Metabolite Produced by the Procyclic Trypanosoma brucei* , 2006, Journal of Biological Chemistry.

[183]  H. Saz,et al.  Acetyl-CoA hydrolase activity and function in Ascaris suum muscle mitochondria. , 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[184]  P. T. Englund,et al.  A fatty-acid synthesis mechanism specialized for parasitism , 2007, Nature Reviews Microbiology.

[185]  A. Djikeng,et al.  A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. , 2000, RNA.

[186]  A. Allison Purine and pyrimidine metabolism , 1976, Nature.

[187]  F. Opperdoes,et al.  Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[188]  A. Schneider,et al.  A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria , 1994, Molecular and cellular biology.

[189]  I. Coppens,et al.  Host Plasma Low Density Lipoprotein Particles as an Essential Source of Lipids for the Bloodstream Forms of Trypanosoma brucei(*) , 1995, The Journal of Biological Chemistry.

[190]  Ruedi Aebersold,et al.  Four Related Proteins of the Trypanosoma brucei RNA Editing Complex , 2001, Molecular and Cellular Biology.

[191]  H. Yamashita,et al.  Acetate generation in rat liver mitochondria; acetyl-CoA hydrolase activity is demonstrated by 3-ketoacyl-CoA thiolase. , 2006, Biochimica et biophysica acta.

[192]  Michael P Barrett,et al.  Proline Metabolism in Procyclic Trypanosoma brucei Is Down-regulated in the Presence of Glucose* , 2005, Journal of Biological Chemistry.

[193]  F. Opperdoes,et al.  Localization of nine glycolytic enzymes in a microbody‐like organelle in Trypanosoma brucei: The glycosome , 1977, FEBS letters.

[194]  R. Brown,et al.  The utilization of glucose and proline by culture forms of Trypanosoma brucei. , 1972, The Journal of protozoology.

[195]  R. Westerberg,et al.  Fatty acid elongases in mammals: their regulation and roles in metabolism. , 2006, Progress in lipid research.

[196]  M. Parsons,et al.  Molecular cloning of the glycosomal malate dehydrogenase of Trypanosoma brucei. , 1998, Molecular and biochemical parasitology.

[197]  B. Wickstead,et al.  Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. , 2002, Molecular and biochemical parasitology.

[198]  Thomas C R Williams,et al.  Capturing Metabolite Channeling in Metabolic Flux Phenotypes1[W] , 2011, Plant Physiology.

[199]  K. Matthews The developmental cell biology of Trypanosoma brucei , 2005, Journal of Cell Science.

[200]  P. Bastin,et al.  TbAGO1, an Argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei , 2003, BMC Biology.

[201]  M. Gelb,et al.  Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei. , 2012, International journal for parasitology.

[202]  Larry Simpson,et al.  Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA , 1990, Cell.

[203]  R. Wanders,et al.  Identification of fatty acid oxidation disorder patients with lowered acyl‐CoA thioesterase activity in human skin fibroblasts , 2005, European journal of clinical investigation.

[204]  F. Vaz,et al.  Enzymology of the carnitine biosynthesis pathway , 2010, IUBMB life.

[205]  Terry K. Smith,et al.  Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei , 2008, Molecular microbiology.

[206]  R. A. Dale Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. , 1978, Biochimica et biophysica acta.

[207]  E. Ullu,et al.  Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei , 2009, Proceedings of the National Academy of Sciences.

[208]  R. Brun,et al.  Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. , 1979, Acta tropica.

[209]  Eleanor C. Saunders,et al.  Isotopomer Profiling of Leishmania mexicana Promastigotes Reveals Important Roles for Succinate Fermentation and Aspartate Uptake in Tricarboxylic Acid Cycle (TCA) Anaplerosis, Glutamate Synthesis, and Growth* , 2011, The Journal of Biological Chemistry.

[210]  M. Barrett The pentose phosphate pathway and parasitic protozoa. , 1997, Parasitology today.

[211]  K. Gull,et al.  Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle , 1995, The Journal of cell biology.

[212]  C. Clayton,et al.  Regulated expression of glycosomal phosphoglycerate kinase in Trypanosoma brucei. , 2007, Molecular and biochemical parasitology.

[213]  P. van den Bossche,et al.  Adaptations in the Glucose Metabolism of Procyclic Trypanosoma brucei Isolates from Tsetse Flies and during Differentiation of Bloodstream Forms , 2009, Eukaryotic Cell.

[214]  S. Henikoff,et al.  Chromatin-based transcriptional punctuation. , 2009, Genes & development.

[215]  M. Biran,et al.  Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes , 2009, Proceedings of the National Academy of Sciences.

[216]  C. Wang,et al.  Absence of substrate channeling in the glycosome of Trypanosoma brucei. , 1986, Molecular and biochemical parasitology.

[217]  Jonathan E. Allen,et al.  Draft Genome of the Filarial Nematode Parasite Brugia malayi , 2007, Science.

[218]  Barbara M. Bakker,et al.  Proliferating bloodstream-form Trypanosoma brucei use a negligible part of consumed glucose for anabolic processes. , 2012, International journal for parasitology.

[219]  J Quackenbush,et al.  The African trypanosome genome. , 2000, International journal for parasitology.

[220]  M. Barrett,et al.  Affinity chromatography using trypanocidal arsenical drugs identifies a specific interaction between glycerol-3-phosphate dehydrogenase from Trypanosoma brucei and Cymelarsan. , 1999, European journal of biochemistry.

[221]  Jean-Charles Portais,et al.  Transketolase in Trypanosoma brucei. , 2011, Molecular and biochemical parasitology.

[222]  F. Opperdoes,et al.  Purification, localisation and characterisation of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. , 1999, Molecular and biochemical parasitology.

[223]  M. Biran,et al.  Ablation of Succinate Production from Glucose Metabolism in the Procyclic Trypanosomes Induces Metabolic Switches to the Glycerol 3-Phosphate/Dihydroxyacetone Phosphate Shuttle and to Proline Metabolism* , 2010, The Journal of Biological Chemistry.

[224]  David A. Matthews,et al.  Structure of and kinetic channelling in bifunctional dihydrofolate reductase–thymidylate synthase , 1994, Nature Structural Biology.

[225]  J. Warrington,et al.  Identification of a Mammalian Long Chain Fatty Acyl Elongase Regulated by Sterol Regulatory Element-binding Proteins* , 2001, The Journal of Biological Chemistry.

[226]  I. Coppens,et al.  Exogenous and endogenous sources of sterols in the culture-adapted procyclic trypomastigotes of Trypanosoma brucei. , 1995, Molecular and biochemical parasitology.

[227]  T. Ochsenreiter,et al.  RNA editing in kinetoplastids , 2010, RNA biology.

[228]  M. Prescott,et al.  Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by Old and New World Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. , 2000, European journal of biochemistry.

[229]  P. Schönheit,et al.  Novel Type of ADP-Forming Acetyl Coenzyme A Synthetase in Hyperthermophilic Archaea: Heterologous Expression and Characterization of Isoenzymes from the Sulfate Reducer Archaeoglobus fulgidus and the Methanogen Methanococcus jannaschii , 2002, Journal of bacteriology.

[230]  R. Schultz,et al.  Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. , 2000, Development.

[231]  Barbara M. Bakker,et al.  Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. , 2001, The Biochemical journal.

[232]  B. Wickstead,et al.  The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. , 2004, Genome research.

[233]  P. T. Englund,et al.  Fatty acid synthesis in African trypanosomes: a solution to the myristate mystery. , 2001, Trends in parasitology.

[234]  R. Benne,et al.  Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA , 1986, Cell.

[235]  A. Tielens,et al.  The solubilization of a SHAM sensitive, cyanide insensitive ubiquinol oxidase from Trypanosoma brucei. , 1985, The Journal of parasitology.

[236]  F. Opperdoes,et al.  A comparison of the glycosomes (microbodies) isolated from Trypanosoma brucei bloodstream form and cultured procyclic trypomastigotes. , 1984, Molecular and biochemical parasitology.

[237]  Alisdair R Fernie,et al.  Glycolytic Enzymes Associate Dynamically with Mitochondria in Response to Respiratory Demand and Support Substrate Channeling[W] , 2007, The Plant Cell Online.

[238]  R. Macnab,et al.  Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria , 1981, Journal of bacteriology.

[239]  U. Hibner,et al.  DNA rearrangements and antigenic variation in Trypanosoma equiperdum: multiple expression-linked sites in independent isolates of trypanosomes expressing the same antigen , 1983, Molecular and cellular biology.

[240]  David G. Watson,et al.  A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes , 2010, PLoS pathogens.

[241]  E. Newman,et al.  Role of threonine dehydrogenase in Escherichia coli threonine degradation , 1977, Journal of bacteriology.

[242]  E. Krafsur Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis , 2000 .

[243]  I. Loikkanen,et al.  Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated , 2002, Mechanisms of Development.

[244]  Michael Boshart,et al.  Procyclic Trypanosoma brucei Do Not Use Krebs Cycle Activity for Energy Generation* , 2003, The Journal of Biological Chemistry.

[245]  M. Grunberg‐Manago,et al.  Enzymatic phosphorylation of acetate. , 1954, The Journal of biological chemistry.

[246]  G. C. Hill,et al.  Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. , 1998, Molecular and biochemical parasitology.

[247]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[248]  S. Gannavaram,et al.  Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β‐oxidation of fatty acids and blocks cell division in the amastigote stage , 2012, Molecular microbiology.

[249]  K. Stuart,et al.  Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. , 1987, The Journal of biological chemistry.

[250]  Keith Gull,et al.  A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei , 2001, Nature.

[251]  K. Kirk,et al.  A surface transporter family conveys the trypanosome differentiation signal , 2009, Nature.

[252]  J. Lukeš,et al.  Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. , 2011, Molecular and biochemical parasitology.

[253]  J. Barrett,et al.  Pathways of acetate and propionate production in adult Fasciola hepatica. , 1978, International Journal of Parasitology.

[254]  M. Ginger,et al.  Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana. , 1999, The Biochemical journal.

[255]  R. E. Reeves,et al.  An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. , 1977, The Journal of biological chemistry.

[256]  Larry Simpson,et al.  The polarity of editing within a multiple gRNA-mediated domain is due to formation of anchors for upstream gRNAs by downstream editing , 1992, Cell.

[257]  Larry Simpson,et al.  A model for RNA editing in kinetoplastid mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information , 1990, Cell.

[258]  R. Leoncini,et al.  Inhibition and regulation of rat liver L-threonine dehydrogenase by different fatty acids and their derivatives. , 2001, Biochimica et biophysica acta.

[259]  C. Tschudi,et al.  RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements , 1994, Molecular and cellular biology.

[260]  F. Opperdoes,et al.  Topogenesis of microbody enzymes: a sequence comparison of the genes for the glycosomal (microbody) and cytosolic phosphoglycerate kinases of Trypanosoma brucei. , 1985, The EMBO journal.

[261]  L. Sperling,et al.  Homology-dependent gene silencing in Paramecium. , 1998, Molecular biology of the cell.

[262]  Frédéric Bringaud,et al.  When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. , 2012, International journal for parasitology.

[263]  A. Roger,et al.  Supplemental Data Organelles in Blastocystis That Blur the Distinction between Mitochondria and Hydrogenosomes , 2022 .

[264]  A. Schnaufer,et al.  The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei , 2009, PLoS pathogens.

[265]  R. Ketting microRNA Biogenesis and Function : An overview. , 2011, Advances in experimental medicine and biology.

[266]  J. Lukeš,et al.  Downregulation of the nuclear‐encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei , 2005, Molecular microbiology.

[267]  D. M. Greenberg,et al.  Studies on the properties of threonine aldolases. , 1957, The Journal of biological chemistry.

[268]  A. Steinbüchel,et al.  Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. , 1986, Molecular and biochemical parasitology.

[269]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[270]  W. Hol,et al.  Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. , 2003, Journal of molecular biology.

[271]  J. Weber Structural biology: Toward the ATP synthase mechanism. , 2010, Nature chemical biology.

[272]  J Van Roy,et al.  Molecular characterization of the first two enzymes of the pentose-phosphate pathway of Trypanosoma brucei. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase. , 2000, The Journal of biological chemistry.

[273]  S. Michaeli,et al.  Expression Studies on Clustered Trypanosomatid Box C/D Small Nucleolar RNAs* , 2001, The Journal of Biological Chemistry.

[274]  J. V. Van Beeumen,et al.  Characterization of the respiratory chain from cultured Crithidia fasciculata. , 1997, Molecular and biochemical parasitology.

[275]  B. Wickstead,et al.  Diversity and dynamics of the minichromosomal karyotype in Trypanosoma brucei. , 2001, Molecular and biochemical parasitology.

[276]  D. Lindmark Energy metabolism of the anaerobic protozoon Giardia lamblia. , 1980, Molecular and biochemical parasitology.

[277]  S. Schenkman,et al.  Post-translational modifications of Trypanosoma cruzi histone H4. , 2006, Molecular and biochemical parasitology.

[278]  J. Grivet,et al.  Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2 , 2004, Archives of Microbiology.

[279]  E. Ullu,et al.  Retention and Loss of RNA Interference Pathways in Trypanosomatid Protozoans , 2010, PLoS pathogens.

[280]  F. Opperdoes,et al.  Evolution of energy metabolism and its compartmentation in Kinetoplastida , 2003, Kinetoplastid biology and disease.

[281]  A. Schnaufer,et al.  The F1‐ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function , 2005, The EMBO journal.

[282]  W. Holms,et al.  The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. , 1986, Current topics in cellular regulation.

[283]  G. Rudenko,et al.  RNA polymerase I can mediate expression of CAT and neo protein‐coding genes in Trypanosoma brucei. , 1991, The EMBO journal.

[284]  Jay J Thelen,et al.  Biochemical approaches for discovering protein-protein interactions. , 2008, The Plant journal : for cell and molecular biology.

[285]  Philippe Diolez,et al.  ATP Generation in the Trypanosoma brucei Procyclic Form , 2003, Journal of Biological Chemistry.

[286]  G. Cross,et al.  Utilization of amino acids by Trypanosoma brucei in culture: L-threonine as a precursor for acetate , 1975, Parasitology.

[287]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[288]  W. Martin,et al.  Pyruvate Formate-lyase and a Novel Route of Eukaryotic ATP Synthesis in Chlamydomonas Mitochondria* , 2006, Journal of Biological Chemistry.

[289]  S. Roseman,et al.  Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. , 1986, The Journal of biological chemistry.

[290]  L. Vanhamme,et al.  Specific binding of proteins to the noncoding strand of a crucial element of the variant surface glycoprotein, procyclin, and ribosomal promoters of trypanosoma brucei , 1995, Molecular and cellular biology.

[291]  J Ovádi,et al.  Physiological significance of metabolic channelling. , 1991, Journal of theoretical biology.

[292]  T. Ochsenreiter,et al.  The Function of RNA Editing in Trypanosomes , 2008 .

[293]  F. Bringaud,et al.  Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[294]  R. Gilbert,et al.  The role of threonine in the metabolism of acetyl coenzyme a by Trypanosoma brucei brucei. , 1983, Comparative biochemistry and physiology. B, Comparative biochemistry.

[295]  J. van der Oost,et al.  Production and characterization of a thermostable L‐threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus , 2006, The FEBS journal.

[296]  H. E. Umbarger,et al.  THREONINE DEAMINATION IN ESCHERICHIA COLI I , 1956 .

[297]  G. Sawers The anaerobic degradation of l-serine and l-threonine in enterobacteria: networks of pathways and regulatory signals , 1998, Archives of Microbiology.