Monogamy of αth power entanglement measurement in qubit systems

Abstract In this paper, we study the α th power monogamy properties related to the entanglement measure in bipartite states. The monogamy relations related to the α th power of negativity and the Convex-Roof Extended Negativity are obtained for N -qubit states. We also give a tighter bound of hierarchical monogamy inequality for the entanglement of formation. We find that the GHZ state and W state can be used to distinguish both the α th power of the concurrence for 0 α 2 and the α th power of the entanglement of formation for 0 α ≤ 1 2 . Furthermore, we compare concurrence with negativity in terms of monogamy property and investigate the difference between them.

[1]  Soojoon Lee,et al.  Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. , 2014, Physical review letters.

[2]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[3]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[4]  Felipe F. Fanchini,et al.  Monogamy of entanglement of formation , 2014 .

[5]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[6]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[7]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[8]  D. Kaszlikowski,et al.  Optimal cloning and singlet monogamy. , 2009, Physical review letters.

[9]  U. Sen,et al.  All Multiparty Quantum States Can Be Made Monogamous , 2012, 1206.4029.

[10]  U. Sen,et al.  Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous , 2014 .

[11]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[12]  Z. D. Wang,et al.  Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems , 2014, 1408.5651.

[13]  Dagmar Bruss Entanglement splitting of pure bipartite quantum states , 1999 .

[14]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[15]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Jeong San Kim,et al.  Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity , 2008, 0811.2047.

[17]  Chris Calabro,et al.  The exponential complexity of satisfiability problems , 2009 .

[18]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[19]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[20]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[21]  J. Preskill,et al.  Unitarity of black hole evaporation in final-state projection models , 2013, 1308.4209.

[22]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[23]  Sung Dahm Oh,et al.  Convex-roof extended negativity as an entanglement measure for bipartite quantum systems , 2003, quant-ph/0310027.

[24]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.