Ambient stability of chemically passivated germanium interfaces

The stability of any semiconductor surface passivating layer is key to applications. Second harmonic generation (SHG) can be used to probe the chemical state of semiconductor interfaces, as well as investigate the mechanisms of chemical transformation. While the SHG rotational anisotropy changes upon sulfidation or alkylation of Ge surfaces, SHG appears far less sensitive to H and Cl passivation of germanium surfaces than to silicon surfaces. Investigation of the stability of chemically modified germanium surfaces using a number of additional techniques, including atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), reveals that H- and Cl-terminated Ge(1 1 1) rapidly re-oxidize in ambient. S- and alkyl-terminations are more robust, showing little sign of oxide formation after a month in ambient. 2003 Elsevier B.V. All rights reserved.

[1]  Bernardo S. Mendoza,et al.  Optical second harmonic spectroscopy of semiconductor surfaces: advances in microscopic understanding , 2001 .

[2]  D. Guidotti,et al.  Second harmonic generation in centro-symmetric semiconductors , 1983 .

[3]  John E. Sipe,et al.  Phenomenological treatment of surface second-harmonic generation , 1988 .

[4]  Sipe,et al.  Picosecond and nanosecond laser-induced second-harmonic generation from centrosymmetric semiconductors. , 1985, Physical review. B, Condensed matter.

[5]  W. H. Weinberg,et al.  Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route , 1996 .

[6]  Toshio Ogino,et al.  Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study , 1995 .

[7]  Moss,et al.  Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. , 1987, Physical review. B, Condensed matter.

[8]  Gunter Lüpke,et al.  Characterization of semiconductor interfaces by second-harmonic generation , 1999 .

[9]  W. H. Jeu,et al.  Highly Stable Si−C Linked Functionalized Monolayers on the Silicon (100) Surface , 1998 .

[10]  Tadahiro Ohmi,et al.  Control Factor of Native Oxide Growth on Silicon in Air or in Ultrapure Water , 1989 .

[11]  Joe C. Campbell,et al.  Interdigitated Ge p-i-n photodetectors fabricated on a Si substrate using graded SiGe buffer layers , 2002 .

[12]  E. Borguet,et al.  Dynamics and second-order nonlinear optical susceptibility of photoexcited carriers at Si(111) interfaces , 2003 .

[13]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[14]  Peter R. Norton,et al.  The S‐passivation of Ge(100)‐(1×1) , 1995 .

[15]  R. Cicero,et al.  Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111) , 2000 .

[16]  R. J. Archer Optical Measurement of Film Growth on Silicon and Germanium Surfaces in Room Air , 1957 .

[17]  M. Linford,et al.  Bioreactive self-assembled monolayers on hydrogen-passivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy. , 1997, Journal of structural biology.

[18]  C. Kittel Introduction to solid state physics , 1954 .

[19]  J. Dadap,et al.  Femtosecond carrier-induced screening of dc electric-field-induced second-harmonic generation at the Si(001) SiO(2) interface. , 1997, Optics letters.

[20]  E. Borguet,et al.  Nonquadratic second-harmonic generation from semiconductor-oxide interfaces , 2001 .

[21]  G. Hughes,et al.  An X-ray photoelectron spectroscopy study of the HF etching of native oxides on Ge(111) and Ge(100) surfaces , 1998 .

[22]  Oleg A. Aktsipetrov,et al.  Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage , 1997 .

[23]  J. Buriak,et al.  Hydrogermylation of Alkenes and Alkynes on Hydride-Terminated Ge(100) Surfaces , 2000 .

[24]  R. Schulz,et al.  Oxidation of HF-treated Si wafer surfaces in air , 1990 .

[25]  D. Wayner,et al.  Controlled Functionalization and Multistep Chemical Manipulation of Covalently Modified Si(111) Surfaces1 , 1999 .

[26]  D. Villeneuve,et al.  Second harmonic generation spectroscopy of chemically modified Si(1 1 1) surfaces , 2001 .

[27]  M. Grundner,et al.  Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces , 1989 .

[28]  P. Balk,et al.  The Si-SiO2 system , 1988 .

[29]  R. Maboudian,et al.  Formation of alkanethiol monolayer on Ge(111). , 2001, Journal of the American Chemical Society.

[30]  H. Driel,et al.  Second- and third-harmonic generation from cubic centrosymmetric crystals with vicinal faces: phenomenological theory and experiment , 1994 .

[31]  E. Borguet,et al.  Infrared second harmonic generation spectroscopy of Ge(111) interfaces , 2003 .

[32]  Xiaoyang Zhu,et al.  Molecular Assemblies on Silicon Surfaces via Si−O Linkages , 2000 .

[33]  Roya Maboudian,et al.  Stability of ammonium fluoride‐treated Si(100) , 1995 .

[34]  Z. Lu,et al.  Air‐stable Cl‐terminated Ge(111) , 1996 .

[35]  J. Bardeen,et al.  The Transistor, A Semiconductor Triode , 1998, Proceedings of the IEEE.

[36]  E. Borguet,et al.  Second-harmonic generation from chemically modified Ge(111) interfaces , 2002 .

[37]  M. Seah,et al.  Practical Surface Analysis , 1992 .

[38]  R. Boukherroub,et al.  New Synthetic Routes to Alkyl Monolayers on the Si(111) Surface1 , 1999 .

[39]  Sudhanshu S. Jha,et al.  OPTICAL SECOND HARMONIC GENERATION IN REFLECTION FROM MEDIA WITH INVERSION SYMMETRY. , 1968 .

[40]  Krause,et al.  Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy. , 1993, Physical review letters.

[41]  D. Keane,et al.  Structure of a passivated Ge surface prepared from aqueous solution , 2000 .

[42]  G. P. Li,et al.  Detection of gate oxide charge trapping by second-harmonic generation , 1999 .

[43]  E. Borguet,et al.  Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy , 2000 .

[44]  Jili He,et al.  Self-Assembly of Alkyl Monolayers on Ge(111)1a , 1998 .