Potential behaviour of (Fe, Y) sites due to self-irradiation, as resolved through XAFS of natural metamict gadolinite

[1]  Shengheng Tan,et al.  Effects of Rare Earth Variation on Feed-to-Glass Conversion During Nuclear Waste Vitrification , 2022, SSRN Electronic Journal.

[2]  W. Pisarski Rare Earth Doped Glasses/Ceramics: Synthesis, Structure, Properties and Their Optical Applications , 2022, Materials.

[3]  A. Grosvenor,et al.  Review of Rare-Earth Phosphate Materials for Nuclear Waste Sequestration Applications , 2022, ACS omega.

[4]  N. Hyatt,et al.  Phase Evolution in the CaZrTi2O7–Dy2Ti2O7 System: A Potential Host Phase for Minor Actinide Immobilization , 2022, Inorganic chemistry.

[5]  J. McCloy,et al.  Vitrification of wastes: from unwanted to controlled crystallization, a review , 2022, Comptes Rendus. Géoscience.

[6]  M. Schweiger,et al.  Forty years of durability assessment of nuclear waste glass by standard methods , 2021, npj Materials Degradation.

[7]  MhdAmmar Hafiz,et al.  Recovery of rare earth elements from waste streams using membrane processes: An overview , 2021 .

[8]  Xiaoqi Sun,et al.  A safer and cleaner process for recovering thorium and rare earth elements from radioactive waste residue. , 2020, Journal of hazardous materials.

[9]  J. Chaouki,et al.  Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals , 2020, Metals.

[10]  M. I. Ojovan,et al.  The Influence of Radiation on Confinement Properties of Nuclear Waste Glasses , 2020, Science and Technology of Nuclear Installations.

[11]  J. Brugger,et al.  Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study , 2020, Geochimica et Cosmochimica Acta.

[12]  I. Todorov,et al.  Evolution of amorphous structure under irradiation: zircon case study , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  F. M. Ezz-eldin,et al.  Influence of doping transition metals and irradiation on some physical properties of borate glass , 2020 .

[14]  M. I. Ojovan,et al.  Special Issue: Materials for Nuclear Waste Immobilization , 2019, Materials.

[15]  A. K. Tyagi,et al.  Leaching studies on borosilicate glasses for the immobilization of high-level radioactive waste in the pellet form subjected to aggressive test conditions , 2019, Bulletin of Materials Science.

[16]  A. Finch,et al.  Structural state of rare earth elements in eudialyte-group minerals , 2019, Mineralogical Magazine.

[17]  R. Lach,et al.  The glass formation and crystallization studies on iron phosphate–silicate glasses , 2019, Journal of Thermal Analysis and Calorimetry.

[18]  G. Righini,et al.  Rare-earth doped glasses and light managing in solar cells , 2019, Journal of Physics: Conference Series.

[19]  D. Schild,et al.  Fifteen Years of Radionuclide Research at the KIT Synchrotron Source in the Context of the Nuclear Waste Disposal Safety Case , 2019, Geosciences.

[20]  N. Hyatt,et al.  Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program , 2019, MRS Advances.

[21]  F. Livens,et al.  Plutonium Migration during the Leaching of Cemented Radioactive Waste Sludges , 2019, Geosciences.

[22]  S. C. Colak Production and investigation of black glasses as absorber materials: Transition metal ions doped silicate glasses , 2018 .

[23]  N. Hyatt,et al.  Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics , 2018, Journal of Nuclear Materials.

[24]  M. Nastasi,et al.  PM-04Relationship between amorphous structure and radiation tolerance of silicon oxycarbide , 2018, Microscopy.

[25]  J. Qiu,et al.  Transition Metal Doped Smart Glass with Pressure and Temperature Sensitive Luminescence , 2018, Advanced Optical Materials.

[26]  K. Jolley,et al.  Iron phosphate glasses: Bulk properties and atomic scale structure , 2017 .

[27]  D. Neuville,et al.  Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts , 2017 .

[28]  J. Stebbins “Free” oxide ions in silicate melts: Thermodynamic considerations and probable effects of temperature , 2017 .

[29]  B. Cheng,et al.  Optical properties of selected 4d and 5d transition metal ion-doped glasses , 2017 .

[30]  Charles E. Johnson,et al.  Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses , 2017 .

[31]  D. Olive,et al.  Effect of temperature and radiation damage on the local atomic structure of metallic plutonium and related compounds , 2017 .

[32]  K. Jolley,et al.  Iron phosphate glasses: structure determination and radiation tolerance , 2016 .

[33]  T. Charpentier,et al.  Rare-earth silicate crystallization in borosilicate glasses: Effect on structural and chemical durability properties , 2016 .

[34]  A. P. Hammersley,et al.  FIT2D: a multi-purpose data reduction, analysis and visualization program , 2016 .

[35]  K. K. Pandey,et al.  Investigating structural aspects to understand the putative/claimed non-toxicity of the Hg-based Ayurvedic drug Rasasindura using XAFS. , 2015, Journal of synchrotron radiation.

[36]  T. Jitwatcharakomol,et al.  The Effect of Heat Treatment on Fe2+/Fe3+ Ratio in Soda-Lime Silicate Glass , 2015 .

[37]  Hugo Thienpont,et al.  Iron speciation in soda-lime-silica glass: a comparison of XANES and UV-vis-NIR spectroscopy , 2015 .

[38]  K. Jolley,et al.  Iron phosphate glasses: structure determination and displacement energy thresholds, using a fixed charge potential model , 2015 .

[39]  S. Stefanovsky,et al.  Cerium valence in matrices for actinide immobilization , 2015, Doklady Chemistry.

[40]  L. Mei,et al.  Exploring Actinide Materials Through Synchrotron Radiation Techniques , 2014, Advanced materials.

[41]  W. Szczerba,et al.  Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. , 2014, Physical chemistry chemical physics : PCCP.

[42]  M. Stennett,et al.  Selective behaviour of dilute Fe3 + ions in silicate glasses: an Fe K-edge EXAFS and XANES study , 2014 .

[43]  J. Crum,et al.  The formation of crystals in glasses containing rare earth oxides , 2014 .

[44]  A. G. Roca,et al.  Fe K-Edge X-ray Absorption Spectroscopy Study of Nanosized Nominal Magnetite , 2014 .

[45]  S. Klemme,et al.  The influence of composition on the local structure around yttrium in quenched silicate melts — Insights from EXAFS , 2013 .

[46]  G. Aquilanti,et al.  XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia , 2013 .

[47]  K. K. Pandey,et al.  Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron source , 2013 .

[48]  L. Wang,et al.  Ceramics for high level radioactive waste solidification , 2012, Journal of Advanced Ceramics.

[49]  S. Santos,et al.  Transition Metals in Glass Formation , 2012 .

[50]  K. V. Shanavas,et al.  Pressure induced crystallization in amorphous silicon , 2011 .

[51]  M. I. Ojovan,et al.  Glassy Wasteforms for Nuclear Waste Immobilization , 2011 .

[52]  K. V. Shanavas,et al.  Memory effect in low-density amorphous silicon under pressure , 2011 .

[53]  Rodney C. Ewing,et al.  Iconography : Safe management of actinides in the nuclear fuel cycle: Role of mineralogy , 2011 .

[54]  Antonio Tilocca,et al.  Short‐Range Structure of Yttrium Alumino‐Silicate Glass for Cancer Radiotherapy: Car–Parrinello Molecular Dynamics Simulations , 2010 .

[55]  John D. Vienna,et al.  Nuclear Waste Vitrification in the United States: Recent Developments and Future Options , 2010 .

[56]  R. Ewing,et al.  Intrinsic Structural Disorder and Radiation Response of Nanocrystalline Gd2(Ti0.65Zr0.35)2O7 Pyrochlore , 2010 .

[57]  Katherine A. Kelley,et al.  High-precision determination of iron oxidation state in silicate glasses using XANES , 2009 .

[58]  Kazuya Tanaka,et al.  Determination of the host phase of rare earth elements in natural carbonate using X-ray absorption near-edge structure , 2009 .

[59]  V. Bermanec,et al.  Metamict Minerals : an Insight into a Relic Crystal Structure Using XRD, Raman Spectroscopy, SAED and HRTEM , 2008 .

[60]  T. Charpentier,et al.  Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass , 2007, 1104.1860.

[61]  N. T. Rempe Permanent underground repositories for radioactive waste , 2007 .

[62]  D. Neuville,et al.  Development and Characterization of Rare Earth-Rich Glassy Matrices Envisaged for the Immobilization of Concentrated Nuclear Waste Solutions , 2006 .

[63]  김유택,et al.  전기로 제강분진이 첨가된 규산염계 유리의 중금속 용출 특성 , 2006 .

[64]  S. Sen,et al.  Observation of a stuffed unmodified network in beryllium silicate glasses with multinuclear NMR spectroscopy , 2005 .

[65]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[66]  F. Farges,et al.  The effect of redox state on the local structural environment of iron in silicate glasses: A combined XAFS spectroscopy, molecular dynamics, and bond valence study , 2004 .

[67]  C. Liu,et al.  Role of yttrium in glass formation of Fe-based bulk metallic glasses , 2003 .

[68]  K. D. Jayasuriya,et al.  XANES calibrations for the oxidation state of iron in a silicate glass , 2003 .

[69]  Anthony G. Frutos,et al.  Rare earth-doped glass microbarcodes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Benjamin K. Wilson,et al.  The effect of composition on spinel equilibrium and crystal size in high-level waste glass , 2002 .

[71]  Corwin H. Booth,et al.  An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations , 2002 .

[72]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[73]  M Newville,et al.  EXAFS analysis using FEFF and FEFFIT. , 2001, Journal of synchrotron radiation.

[74]  Dean R. Haeffner,et al.  Properties and structure of vitrified iron phosphate nuclear wasteforms , 2000 .

[75]  S. Diaz-Moreno,et al.  X-ray Absorption Spectroscopy (XAS) Study of the Hydration Structure of Yttrium(III) Cations in Liquid and Glassy States:??? Eight or Nine-Fold Coordination? , 2000 .

[76]  Z. Wu,et al.  XANES studies of Fe-bearing glasses. , 1999, Journal of synchrotron radiation.

[77]  S. Zinkle,et al.  Effects of dose rate and temperature on the crystalline-to-metamict transformation in the ABO 4 orthosilicates , 1999 .

[78]  J. Stebbins,et al.  The Structural Role of Lanthanum and Yttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMR Study , 1998 .

[79]  Pavel R. Hrma,et al.  Chemically durable iron phosphate glass wasteforms , 1998 .

[80]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[81]  R. Devine,et al.  Macroscopic and microscopic effects of radiation in amorphous SiO2 , 1994 .

[82]  F. Farges,et al.  The structure of aperiodic, metamict (Ca, Th)ZrTi_2O_7 (zirconolite): An EXAFS study of the Zr, Th, and U sites , 1993 .

[83]  J. Akimoto,et al.  Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses , 1987 .

[84]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[85]  B. Sales,et al.  Lead-Iron Phosphate Glass: A Stable Storage Medium for High-Level Nuclear Waste , 1984, Science.

[86]  A. O. Larsen,et al.  Gadolinite-(Ce) from Skien, southwestern Oslo region, Norway , 1978 .

[87]  M. G. Chasanov,et al.  Investigation of the distribution of fission products among molten fuel and reactor phases , 1973 .

[88]  A. J. Ehlmann,et al.  Annealing characteristics of metamict gadolinite from Rode Ranch Texas , 1970 .

[89]  M. J. Vold Differential Thermal Analysis , 1949 .

[90]  D. Caurant,et al.  Glasses and Glass-Ceramics for Nuclear Waste Immobilization , 2021 .

[91]  D. Neuville,et al.  Structural Characterizations of Rare Earth-Rich Glasses for Nuclear Waste Immobilization , 2019 .

[92]  W. Weber,et al.  Radiation and Thermal Ageing of Nuclear Waste Glass , 2014 .

[93]  J. Delaye,et al.  Alpha Decays Impact on Nuclear Glass Structure , 2014 .

[94]  M. Prado,et al.  Crystallization of Yttrium and Samarium Aluminosilicate Glasses , 2013 .

[95]  I. Kim,et al.  Immobilizationof LanthanideOxides Waste fromPyrochemical Process , 2011 .

[96]  Edgar Dutra Zanotto A bright future for glass-ceramics , 2010 .

[97]  B. Boizot,et al.  Irradiation effects in oxide glasses doped with transition and rare-earth elements , 2009 .

[98]  F. Farges,et al.  Iron in silicate glasses: a systematic analysis of pre-edge, XANES and EXAFS features , 2005 .

[99]  F. Farges,et al.  XAFS and molecular dynamics study of natural minerals, analogues of ceramics for nuclear waste storage , 2005 .

[100]  M. Plodinec Borosilicate glasses for nuclear waste immobilisation , 2000 .

[101]  J. Janeczek,et al.  Annealing of radiation damage in allanite and gadolinite , 1993 .

[102]  Kozo NRcasurue A refinement of the crystal structure of gadolinite , 1984 .

[103]  J. Iro Synthesis and Study of Gadolinites , 1974 .