Friction-Induced Vibration in Lead Screw Drives

[1]  É. Delassus Sur les lois du frottement de glissement , 1923 .

[2]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[3]  H. Ziegler Principles of structural stability , 1968 .

[4]  Virgil Moring Faires,et al.  Design of Machine Elements , 1970 .

[5]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[6]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[7]  C. Sundararajan,et al.  The Vibration and Stability of Elastic Systems Subjected to Follower Forces , 1975 .

[8]  K. Huseyin,et al.  Vibrations and Stability of Multiple Parameter Systems , 1978 .

[9]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[10]  Kathy Hotelling,et al.  Taking the Lead , 1990 .

[11]  Brian Armstrong-Hélouvry,et al.  Stick-slip arising from Stribeck friction , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  A. F. D'Souza,et al.  Self-excited vibrations induced by dry friction, part 2: Stability and limit-cycle analysis , 1990 .

[13]  T. Stolarski Tribology in Machine Design , 1990 .

[14]  U. Olofsson,et al.  Friction-induced noise in screw-nut transmissions , 1991 .

[15]  J. Otsuka Nanometer level positioning using three kinds of lead screws , 1992 .

[16]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[17]  V. Kozlov,et al.  A theory of systems with unilateral constraints , 1995 .

[18]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[19]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[20]  A. A Olȩdzki Modeling and simulation of self-locking drives , 1995 .

[21]  Brian F. Feeny THE NONLINEAR DYNAMICS OF OSCILLATORS WITH STICK-SLIP FRICTION , 1996 .

[22]  Pierre E. Dupont,et al.  Stability of frictional contact in constrained rigid-body dynamics , 1997, IEEE Trans. Robotics Autom..

[23]  F. Elmer Nonlinear dynamics of dry friction , 1997, chao-dyn/9707004.

[24]  van Dh Dick Campen,et al.  Stick-Slip Vibrations Induced by Alternate Friction Models , 1998 .

[25]  D. M. Auslander,et al.  Nanometer positioning of a linear motion stage under static loads , 1998 .

[26]  Karl Popp,et al.  A Historical Review on Dry Friction and Stick-Slip Phenomena , 1998 .

[27]  de A Bram Kraker,et al.  An approximate analysis of dry-friction-induced stick-slip vibratons by a smoothing procedure , 1999 .

[28]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[29]  The Development of Nano-meter Positioning Technology in Japan , 1999 .

[30]  Michael J. Brennan,et al.  Analysis of disc brake noise using a two-degree-of-freedom model , 2002 .

[31]  Edward J. Berger,et al.  Friction modeling for dynamic system simulation , 2002 .

[32]  Henk Nijmeijer,et al.  Periodic motion and bifurcations induced by the Painlevé paradox , 2002 .

[33]  L. Gaul,et al.  Effects of damping on mode‐coupling instability in friction induced oscillations , 2003 .

[34]  J. J. Thomsen,et al.  Analytical approximations for stick-slip vibration amplitudes , 2003 .

[35]  金海,et al.  Impact model resolution on Painlevé's paradox , 2004 .

[36]  Karl Popp,et al.  Vibration Control to Avoid Stick-Slip Motion , 2004 .

[37]  Norbert Hoffmann,et al.  Harmonic Balance and Averaging Techniques for Stick-Slip Limit-Cycle Determination in Mode-Coupling Friction Self-Excited Systems , 2004 .

[38]  Ming-Jyi Jang,et al.  Modeling and high-precision control of a ball-screw-driven stage , 2004 .

[39]  Kripa K. Varanasi,et al.  The Dynamics of Lead-Screw Drives: Low-Order Modeling and , 2004 .

[40]  A. Fidlin Nonlinear oscillations in mechanical engineering , 2005 .

[41]  Jan Awrejcewicz,et al.  Analysis of Dynamic Systems With Various Friction Laws , 2005 .

[42]  Paolo Gallina Vibration in screw jack mechanisms: experimental results , 2005 .

[43]  R. Whalley,et al.  Hybrid modelling of machine tool axis drives , 2005 .

[44]  Christoph Glocker,et al.  Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws , 2005 .

[45]  K. Popp,et al.  Modelling and control of friction-induced vibrations , 2005 .

[46]  Thomas G. Sugar,et al.  Design of Lightweight Lead Screw Actuators for Wearable Robotic Applications , 2006 .

[47]  D. M. Beloiu,et al.  Analytical and experimental investigations of disc brake noise using the frequency-time domain , 2006 .

[48]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[49]  N. Hoffmann Transient Growth and Stick-Slip in Sliding Friction , 2006 .

[50]  Bin Chen,et al.  The bouncing motion appearing in a robotic system with unilateral constraint , 2007 .

[51]  Louis Jezequel,et al.  Effects of damping on brake squeal coalescence patterns – application on a finite element model , 2007 .

[52]  Jean-Jacques Sinou,et al.  The role of damping and definition of the robust damping factor for a self-exciting mechanism with constant friction , 2007 .

[53]  Louis Jezequel,et al.  Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping , 2007 .

[54]  Louis Jezequel,et al.  Investigation of the relationship between damping and mode-coupling patterns in case of brake squeal , 2007 .

[55]  S. Chatterjee,et al.  Non-linear control of friction-induced self-excited vibration , 2007 .

[56]  Louis Jezequel,et al.  The influence of damping on the limit cycles for a self-exciting mechanism , 2007 .

[57]  Utz von Wagner,et al.  Minimal models for disk brake squeal , 2007 .

[58]  Masaaki Okuma,et al.  Effect of surface topography on mode-coupling model of dry contact sliding systems , 2007 .

[59]  N. Hoffmann Linear stability of steady sliding in point contacts with velocity dependent and LuGre type friction , 2007 .

[60]  Kaan Erkorkmaz,et al.  Accurate tracking controller design for high-speed drives , 2007 .

[61]  Jaeyoung Kang Parametric study on friction-induced coupled oscillator , 2008 .

[62]  S. Chatterjee,et al.  On the Design Criteria of Dynamic Vibration Absorbers for Controlling Friction-Induced Oscillations , 2008 .

[63]  Bin Chen,et al.  The Painlevé paradox studied at a 3D slender rod , 2008 .

[64]  F. Chevillot,et al.  The destabilization paradox applied to friction-induced vibrations in an aircraft braking system , 2008 .

[65]  Ugo Galvanetto,et al.  Non-linear dynamics of a mechanical system with a frictional unilateral constraint , 2009 .

[66]  M. F. Golnaraghi,et al.  Friction-Induced Vibration in Lead Screw Systems : Mathematical Modeling and Experimental Studies , 2009 .

[67]  C. Glocker Set-Valued Force Laws: Dynamics of Non-Smooth Systems , 2012 .