Synthesis of an unsymmetrical N-functionalized triazacyclononane ligand and its Cu(II) complex

[1]  O. Reinaud,et al.  Electrochemically driven cup-and-ball CuI and CuII complexes. , 2013, Chemistry.

[2]  R. Tripier,et al.  Monopicolinate-dipicolyl derivative of triazacyclononane for stable complexation of Cu2+ and 64Cu2+. , 2013, Inorganic chemistry.

[3]  R. Tripier,et al.  exo-Diastereoisomer of 10-aryl-1,4,7-triazabicyclo[5.2.1]decane as intermediary in specific derivatisation of triazacyclononane , 2012 .

[4]  W. Tolman,et al.  Type 1 copper site synthetic model complexes with increased redox potentials , 2011, JBIC Journal of Biological Inorganic Chemistry.

[5]  K. Karlin,et al.  Copper-Oxygen Chemistry: Karlin/Copper-Oxygen Chemistry , 2011 .

[6]  S. Lippard,et al.  Phosphorescent sensor for robust quantification of copper(II) ion. , 2011, Journal of the American Chemical Society.

[7]  T. Hubin,et al.  Preparations and applications of synthetic linked azamacrocycle ligands and complexes , 2010 .

[8]  C. Fahrni,et al.  Electronically tuned 1,3,5-triarylpyrazolines as Cu(I)-selective fluorescent probes. , 2010, Organic & biomolecular chemistry.

[9]  C. Anderson,et al.  Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). , 2009, Accounts of chemical research.

[10]  Juyoung Yoon,et al.  A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. , 2009, Chemical communications.

[11]  K. Karlin,et al.  Copper-dioxygen complex mediated C-H bond oxygenation: relevance for particulate methane monooxygenase (pMMO). , 2009, Current opinion in chemical biology.

[12]  T. Joo,et al.  Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. , 2009, Journal of the American Chemical Society.

[13]  M. Suchý,et al.  Synthetic Strategies Toward N‐Functionalized Cyclens , 2008 .

[14]  Y. Rondelez,et al.  Monocopper center embedded in a biomimetic cavity: from supramolecular control of copper coordination to redox regulation. , 2007, Journal of the American Chemical Society.

[15]  Michael J. Hayter,et al.  Neutral (bis-beta-diketonato) iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) metallocycles: structural, electrochemical and solvent extraction studies. , 2007, Dalton transactions.

[16]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[17]  R. Sheldon,et al.  Green oxidation of alcohols using biomimetic Cu complexes and Cu enzymes as catalysts , 2009 .

[18]  S. Itoh Mononuclear copper active-oxygen complexes. , 2006, Current opinion in chemical biology.

[19]  C. Belle,et al.  Sulfur ligation in copper enzymes and models. , 2005, Journal of inorganic biochemistry.

[20]  Suzanne V. Smith Molecular imaging with copper-64. , 2004, Journal of inorganic biochemistry.

[21]  P. Cheng,et al.  Crystal structures and spectroscopic properties of copper(II) and zinc(II) complexes with the macrocycle 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane , 2004 .

[22]  R. Boulatov Understanding the reaction that powers this world: Biomimetic studies of respiratory O2 reduction by cytochrome oxidase , 2004 .

[23]  L. Lindoy,et al.  A three-ring, linked cyclam derivative and its interaction with selected transition and post-transition metal ions , 2003 .

[24]  Zhicong He,et al.  Could redox-switched binding of a redox-active ligand to a copper(II) centre drive a conformational proton pump gate? A synthetic model study. , 2003, Chemistry.

[25]  J. A. Crayston,et al.  Spectroelectrochemistry of copper(II) complexes with deprotonated tetradentate pyridine-2-carboxamide ligands: EC reaction of the electrogenerated Cu(III) species , 2002 .

[26]  I. Fallis,et al.  Divalent first-row transition metal complexes of the rigid pendant-arm ligand 1,4,7-tris(2-aminophenyl)-1,4,7-triazacyclononane , 2000 .

[27]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[28]  A. Bond,et al.  Structural, EPR, and Electrochemical Studies of Binuclear Copper(II) Complexes of Bis(pentadentate) Ligands Derived from Bis(1,4,7-triazacyclonane) Macrocycles. , 1998, Inorganic chemistry.

[29]  F. Lloret,et al.  Stabilization of copper(III) complexes by substituted oxamate ligands , 1998 .

[30]  K. Wainwright,et al.  Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen , 1997 .

[31]  E. C. Wilkinson,et al.  Synthetic Modeling of Nitrite Binding and Activation by Reduced Copper Proteins. Characterization of Copper(I)−Nitrite Complexes That Evolve Nitric Oxide , 1996 .

[32]  G. Lawrance,et al.  Complexes of polyaza macrocycles bearing pendent coordinating groups , 1990 .

[33]  K. Wieghardt,et al.  Syntheses, properties, and electrochemistry of transition-metal complexes of the macrocycle 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (L). Crystal structures of [NiL](ClO4)2, [MnL](ClO4)2, and [PdL](PF6)2 containing a distorted-square-base-pyramidal PdIIN5 core , 1986 .