On parallel complexity of analytic functions

Abstract In this paper, we study the parallel complexity of analytic functions. We investigate the complexity of computing the derivatives, integrals, and zeros of N C or logarithmic-space computable analytic functions, where N C denotes the complexity class of sets acceptable by polynomial-size, polylogarithmic-depth, uniform Boolean circuits. It is shown that the derivatives and integrals of N C (or logarithmic-space) computable analytic functions remain N C (or, respectively, logarithmic-space) computable. We also study the problem of finding all zeros of an NC computable analytic function inside an N C computable Jordan curve, and show that, under a uniformity condition on the function values on the Jordan curve, all zeros can be found in NC .

[1]  Marc Van Barel,et al.  Computing the zeros of analytic functions /Peter Kravanj, Marc Van Barel , 2000 .

[2]  C. Andrew Neff,et al.  Specified precision polynomial root isolation is in NC , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[3]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[4]  M. Meylan,et al.  A parallel algorithm to find the zeros of a complex analytic function. , 2008 .

[5]  D. Du,et al.  Theory of Computational Complexity , 2000 .

[6]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[7]  Andrew Chiu,et al.  Division in logspace-uniform NC1 , 2001, RAIRO Theor. Informatics Appl..

[8]  Carme Àlvarez,et al.  A Very Hard log-Space Counting Class , 1993, Theor. Comput. Sci..

[9]  A. F. D. Santos,et al.  Solution of equations involving analytic functions , 1982 .

[10]  Carsten Carstensen,et al.  Weierstrass formula and zero-finding methods , 1995 .

[11]  Ker-I Ko,et al.  Computing power series in polynomial time , 1988 .

[12]  Markus Bläser Uniform computational complexity of the derivatives of Cinfinity-functions , 2002, Theor. Comput. Sci..

[13]  Marc Van Barel,et al.  Computing the Zeros of Analytic Functions , 2000 .

[14]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[15]  Jean-Claude Yakoubsohn,et al.  Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions , 2005, J. Complex..

[16]  H. James Hoover,et al.  Feasible Real Functions and Arithmetic Circuits , 1990, SIAM J. Comput..

[17]  Ker-I Ko,et al.  Computational Complexity of Two-Dimensional Regions , 1995, SIAM J. Comput..

[18]  H. James Hoover Real Functions, Contraction Mappings and P-Completeness , 1991, Inf. Comput..

[19]  Bruce Litow,et al.  Division in logspace-uniform $\mbox{NC}^1$ , 2001 .

[20]  H. Friedman,et al.  The computational complexity of maximization and integration , 1984 .

[21]  L. M. Delvest,et al.  A Numerical Method for Locating the Zeros of an Analytic Function , 2010 .

[22]  Miodrag S. Petkovic,et al.  On initial conditions for the convergence of simultaneous root finding methods , 1996, Computing.

[23]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[24]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[25]  Fuxiang Yu,et al.  On the Complexity of Convex Hulls of Subsets of the Two-Dimensional Plane , 2008, CCA.

[26]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..