On Exponential Almost Sure Stability of Random Jump Systems

This paper is concerned with a class of random jump systems represented by transition operators, which includes switched linear systems with strictly stationary switching signals in infinite modes space as its special case. A series of necessary and sufficient conditions are established for almost sure stability of this class of random jump systems under different scenarios. The stability criteria obtained are further extended to Markov jump linear systems with infinite states, and hence a unified approach to describing the almost sure stability of MJLSs is addressed under this context. All the results in the work are developed for both the continuous- and discrete-time systems.

[1]  James Lam,et al.  Static output-feedback stabilization of discrete-time Markovian jump linear systems: A system augmentation approach , 2010, Autom..

[2]  Patrizio Colaneri,et al.  Almost sure stability of stochastic linear systems with ergodic parameters: an average contractivity criterion , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  James Lam,et al.  On robust stabilization of Markovian jump systems with uncertain switching probabilities , 2005, Autom..

[4]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[5]  Dmitrii Silvestrov Limit theorems for randomly stopped stochastic processes , 2004 .

[6]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[8]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[9]  Marcelo D. Fragoso,et al.  Optimal Control for Continuous-Time Linear Quadratic Problems with Infinite Markov Jump Parameters , 2001, SIAM J. Control. Optim..

[10]  James Lam,et al.  ℋ ∞ model reduction for continuous-time switched stochastic hybrid systems , 2009 .

[11]  James Lam,et al.  Robust H 2 control of Markovian jump systems with uncertain switching probabilities , 2009, Int. J. Syst. Sci..

[12]  Marcelo D. Fragoso,et al.  Maximal versus strong solution to algebraic Riccati equations arising in infinite Markov jump linear systems , 2008, Syst. Control. Lett..

[13]  Marcelo D. Fragoso,et al.  Stochastic versus mean square stability in continuous time linear infinite Markov jump parameter systems , 2002 .

[14]  Zhendong Sun Stabilizability and insensitivity of switched linear systems , 2004, IEEE Trans. Autom. Control..

[15]  James Lam,et al.  Fixed-order robust H/sub /spl infin// filter design for Markovian jump systems with uncertain switching probabilities , 2006, IEEE Transactions on Signal Processing.

[16]  Michel Mariton,et al.  Almost sure and moments stability of jump linear systems , 1988 .

[17]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[18]  Zidong Wang,et al.  State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates , 2009 .

[19]  D. Stroock An Introduction to Markov Processes , 2004 .

[20]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[21]  Daniel Liberzon,et al.  Lie-Algebraic Stability Criteria for Switched Systems , 2001, SIAM J. Control. Optim..

[22]  Guoliang Wang,et al.  Robust H∞ control of Markovian jump systems with uncertain switching probabilities , 2012 .

[23]  J. Norris Appendix: probability and measure , 1997 .

[24]  Debasish Chatterjee,et al.  On Stability of Randomly Switched Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[25]  宮沢 政清,et al.  P. Bremaud 著, Markov Chains, (Gibbs fields, Monte Carlo simulation and Queues), Springer-Verlag, 1999年 , 2000 .

[26]  J. Lam,et al.  Fixed-Order Robust Filter Design for Markovian Jump Systems With Uncertain Switching Probabilities , 2006 .

[27]  P. Bougerol,et al.  Strict Stationarity of Generalized Autoregressive Processes , 1992 .

[28]  G. Nicolao,et al.  On almost sure stability of discrete-time Markov jump linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[29]  N. Krylov,et al.  Introduction to the Theory of Random Processes , 2002 .

[30]  James Lam,et al.  Stabilization of Markovian Systems via Probability Rate Synthesis and Output Feedback , 2010, IEEE Transactions on Automatic Control.

[31]  Shengyuan Xu,et al.  Robust control of descriptor discrete-time Markovian jump systems , 2007, Int. J. Control.

[32]  J. D. Val,et al.  Full InformationH∞-Control for Discrete-Time Infinite Markov Jump Parameter Systems , 1996 .

[33]  Marcelo D. Fragoso,et al.  A Unified Approach for Stochastic and Mean Square Stability of Continuous-Time Linear Systems with Markovian Jumping Parameters and Additive Disturbances , 2005, SIAM J. Control. Optim..

[34]  Gang George Yin,et al.  Almost Sure Stabilization for Feedback Controls of Regime-Switching Linear Systems With a Hidden Markov Chain , 2009, IEEE Transactions on Automatic Control.

[35]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[36]  Yuguang Fang,et al.  Stabilization of continuous-time jump linear systems , 2002, IEEE Trans. Autom. Control..

[37]  Patrizio Colaneri,et al.  On almost sure stability of continuous-time Markov jump linear systems , 2006, Autom..

[38]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .