Information quantities in non-classical settings

Abstract To cope with difficulties met outside the classical framework for likelihood inference various analogue of observed and expected (Fisher) information have been introduced. Here, some of these information quantities are reviewed, exemplified and compared, and their properties are discussed. Besides observed and expected information we consider incremental observed and expected information (in martingale language these are the quadratic variation and quadratic characteristic of the score process), robust observed information, and observed profile information. Extensions of the ideas to estimating equations and to semiparametric models are considered.

[1]  C. Mallows,et al.  Limit Distributions of Self-normalized Sums , 1973 .

[2]  C. Heyde On combining quasi-likelihood estimating functions , 1987 .

[3]  F. Richards A Method of Maximum‐Likelihood Estimation , 1961 .

[4]  William S. Hearn,et al.  Robust estimation of the natural mortality rate in a completed tagging experiment with variable fishing intensity , 1987 .

[5]  Niels Keiding,et al.  Estimation in the birth process , 1974 .

[6]  C. C. Heyde,et al.  Quasi-Likelihood and Optimal Estimation, Correspondent Paper , 1987 .

[7]  Some comments concerning a curious singularity , 1979 .

[8]  G. Leigh A comparison of estimates of natural mortality from fish tagging experiments , 1988 .

[9]  R. Liptser A strong law of large numbers for local martingales , 1980 .

[10]  M. Sørensen On quasi likelihood for semimartingales , 1990 .

[11]  R. Höpfner Null recurrent birth-and-death processes, limits of certain martingales, and local asymptotic mixed normality , 1990 .

[12]  T. W. Anderson On Asymptotic Distributions of Estimates of Parameters of Stochastic Difference Equations , 1959 .

[13]  Rolando Rebolledo,et al.  Central limit theorems for local martingales , 1980 .

[14]  Paul D. Feigin,et al.  Maximum likelihood estimation for continuous-time stochastic processes , 1976, Advances in Applied Probability.

[15]  David R. Cox,et al.  The Effect of Sampling Rules on Likelihood Statistics , 1984 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[17]  D. Lépingle Sur le comportement asymptotique des martingales locales , 1978 .

[18]  John S. White THE LIMITING DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT IN THE EXPLOSIVE CASE , 1958 .

[19]  O. Barndorff-Nielsen,et al.  A note on a semiparametric estimator of mortality , 1989 .

[20]  Joel Zinn,et al.  Convergence to a Stable Distribution Via Order Statistics , 1981 .

[21]  R. Royall Model robust confidence intervals using maximum likelihood estimators , 1986 .

[22]  C. C. Heyde,et al.  Remarks on efficiency in estimation for branching processes , 1975 .

[23]  P. I. Nelson,et al.  Quasi-likelihood estimation for semimartingales , 1986 .

[24]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[25]  Ishwar V. Basawa,et al.  Asymptotic optimal inference for non-ergodic models , 1983 .

[26]  S. Johansen An Extension of Cox's Regression Model , 1983 .