Leibniz's laws of continuity and homogeneity

We explore Leibniz's understanding of the differential calculus, and argue that his methods were more coherent than is generally recognized. The foundations of the historical infinitesimal calculus of Newton and Leibniz have been a target of numerous criticisms. Some of the critics believed to have found logical fallacies in its foundations. We present a detailed textual analysis of Leibniz's seminal text Cum Prodiisset, and argue that Leibniz's system for differential calculus was free of contradictions.

[1]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[2]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[3]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[4]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[5]  Mikhail G. Katz,et al.  Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..

[6]  M. J. Sheehan Differentials , 1964 .

[7]  Vladimir Kanovei,et al.  Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.

[8]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[9]  G. Leibniz,et al.  Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire , 2004 .

[10]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[11]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[12]  Antoni Malet,et al.  Renaissance notions of number and magnitude , 2006 .

[13]  Method versus calculus in Newtons criticisms of Descartes and Leibniz , 2009 .

[14]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[15]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[16]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[17]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[18]  Eberhard Knobloch,et al.  Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.

[19]  G. Leibniz,et al.  The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .

[20]  H. Keisler THE ULTRAPRODUCT CONSTRUCTION , 2009 .

[21]  P. Fermat,et al.  Oeuvres de Fermat , 1891 .

[22]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[23]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[24]  R. McClenon Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .

[25]  Detlef Laugwitz Infinitely small quantities in Cauchy's textbooks , 1987 .

[26]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[27]  M. Katz,et al.  Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.

[28]  J. Naets How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .

[29]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[30]  Patrick Riley,et al.  Leibniz's Philosophy of Logic and Language , 1973 .

[31]  Nicolas Bourbaki,et al.  Éléments d'histoire des mathématiques , 1971 .

[32]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[33]  W. Luxemburg Non-Standard Analysis , 1977 .

[34]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[35]  Joseph W Dauben,et al.  Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .

[36]  Philip Beeley Leibniz: De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis , 1995 .

[37]  René Taton,et al.  The Principal Works of Simon Stevin , 1959 .