Leibniz's laws of continuity and homogeneity
暂无分享,去创建一个
[1] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[2] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[3] Alexandre V. Borovik,et al. An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..
[4] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[5] Mikhail G. Katz,et al. Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..
[6] M. J. Sheehan. Differentials , 1964 .
[7] Vladimir Kanovei,et al. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.
[8] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[9] G. Leibniz,et al. Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire , 2004 .
[10] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[11] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[12] Antoni Malet,et al. Renaissance notions of number and magnitude , 2006 .
[13] Method versus calculus in Newtons criticisms of Descartes and Leibniz , 2009 .
[14] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[15] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[16] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[17] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[18] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[19] G. Leibniz,et al. The Early Mathematical Manuscripts of Leibniz: Translated from the Latin Texts Published by Carl Immanuel Gerhardt with Critical and Historical Notes , 2012 .
[20] H. Keisler. THE ULTRAPRODUCT CONSTRUCTION , 2009 .
[21] P. Fermat,et al. Oeuvres de Fermat , 1891 .
[22] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[23] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[24] R. McClenon. Sherlock Holmes in Babylon: A Contribution of Leibniz to the History of Complex Numbers , 1923 .
[25] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[26] Henk J. M. Bos,et al. Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .
[27] M. Katz,et al. Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.
[28] J. Naets. How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining , 2010 .
[29] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[30] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[31] Nicolas Bourbaki,et al. Éléments d'histoire des mathématiques , 1971 .
[32] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[33] W. Luxemburg. Non-Standard Analysis , 1977 .
[34] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[35] Joseph W Dauben,et al. Abraham Robinson and nonstandard analysis: history, philosophy, and foundations of mathematics , 1988 .
[36] Philip Beeley. Leibniz: De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis , 1995 .
[37] René Taton,et al. The Principal Works of Simon Stevin , 1959 .