Rapid literature mapping on the recent use of machine learning for 2 wildlife imagery 3

Abstract

[1]  M. Santamouris,et al.  Rapid systematic reviews for synthesizing research on built environment , 2022, Environmental Development.

[2]  M. Lagisz,et al.  Quantifying research interests in 7,521 mammalian species with h-index: a case study , 2021, GigaScience.

[3]  Silvia Zuffi,et al.  Perspectives in machine learning for wildlife conservation , 2021, Nature Communications.

[4]  R. Prosser,et al.  Taxonomic Chauvinism in Pesticide Ecotoxicology , 2021, Environmental toxicology and chemistry.

[5]  Winston Chen,et al.  Exploring Low-light Object Detection Techniques , 2021, ArXiv.

[6]  Germain Forestier,et al.  Recent trends in crowd analysis: A review , 2021 .

[7]  Nickolas M. Wergeles,et al.  A survey and performance evaluation of deep learning methods for small object detection , 2021, Expert Syst. Appl..

[8]  M. Katti,et al.  Decoloniality and anti-oppressive practices for a more ethical ecology , 2021, Nature Ecology & Evolution.

[9]  N. Handegard,et al.  A real‐world dataset and data simulation algorithm for automated fish species identification , 2021, Geoscience Data Journal.

[10]  F. Fruggiero,et al.  A Systematic Mapping of the Advancing Use of Machine Learning Techniques for Predictive Maintenance in the Manufacturing Sector , 2021, Applied Sciences.

[11]  O. Gordo,et al.  Egg recognition: The importance of quantifying multiple repeatable features as visual identity signals , 2021, PloS one.

[12]  Jason A. Papin,et al.  Collaborating with our community to increase code sharing , 2021, PLoS Comput. Biol..

[13]  E. Mayo-Wilson,et al.  The PRISMA 2020 statement: an updated guideline for reporting systematic reviews , 2020, BMJ.

[14]  Steven Reece,et al.  Using very high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes , 2020, bioRxiv.

[15]  Ulrich Dirnagl,et al.  The ARRIVE guidelines 2.0: updated guidelines for reporting animal research , 2020, The Journal of physiology.

[16]  Alexandros Iosifidis,et al.  Deep learning and computer vision will transform entomology , 2020, Proceedings of the National Academy of Sciences.

[17]  Ulrich Dirnagl,et al.  The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research* , 2020, BMC Veterinary Research.

[18]  Nusret Demir,et al.  Automated Bird Counting with Deep Learning for Regional Bird Distribution Mapping , 2020, Animals : an open access journal from MDPI.

[19]  Tanjila Farah,et al.  PakhiChini: Automatic Bird Species Identification Using Deep Learning , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[20]  John Chiverton,et al.  A Review on Computer Vision-Based Methods for Human Action Recognition , 2020, J. Imaging.

[21]  Jason Brunson,et al.  ggalluvial: Layered Grammar for Alluvial Plots , 2020, J. Open Source Softw..

[22]  Heather M. Williams,et al.  Deep learning analysis of nest camera video recordings reveals temperature-sensitive incubation behavior in the purple martin (Progne subis) , 2019, Behavioral Ecology and Sociobiology.

[23]  R. DeSalle,et al.  Distinguishing Extinction and Natural Selection in the Anthropocene: Preventing the Panda Paradox through Practical Education Measures , 2019, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  M. Raymond,et al.  Empathy and compassion toward other species decrease with evolutionary divergence time , 2019, Scientific Reports.

[25]  Francisco Herrera,et al.  Whale counting in satellite and aerial images with deep learning , 2019, Scientific Reports.

[26]  S. Turvey,et al.  Extinction in the Anthropocene , 2019, Current Biology.

[27]  Marius Pedersen,et al.  Image-Based Recognition of Individual Trouts in the Wild , 2019, 2019 8th European Workshop on Visual Information Processing (EUVIP).

[28]  P. Jordano,et al.  Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene , 2019, Science Advances.

[29]  M. Eichhorn,et al.  Decolonizing field ecology , 2019, Biotropica.

[30]  Xiaobin Zhou,et al.  Exploring reporting quality of systematic reviews and Meta-analyses on nursing interventions in patients with Alzheimer’s disease before and after PRISMA introduction , 2018, BMC Medical Research Methodology.

[31]  Shinichi Nakagawa,et al.  Research Weaving: Visualizing the Future of Research Synthesis. , 2018, Trends in ecology & evolution.

[32]  Marco Willi,et al.  Identifying animal species in camera trap images using deep learning and citizen science , 2018, Methods in Ecology and Evolution.

[33]  Alexander Loos,et al.  Towards Automatic Detection of Animals in Camera-Trap Images , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[34]  Holger J. Schünemann,et al.  Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. , 2018, Environment international.

[35]  L. Butgereit,et al.  On Safari with TensorFlow: Assisting Tourism in Rural Southern Africa Using Machine Learning , 2018, 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD).

[36]  Michael A. Tabak,et al.  Machine learning to classify animal species in camera trap images: applications in ecology , 2018, bioRxiv.

[37]  Eric Hervet,et al.  Applications for deep learning in ecology , 2018, bioRxiv.

[38]  Ben. G. Weinstein A computer vision for animal ecology. , 2018, The Journal of animal ecology.

[39]  Lian Pin Koh,et al.  Futurecasting ecological research: The rise of technoecology , 2018 .

[40]  Andrew S. Pullin,et al.  ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps , 2018, Environmental Evidence.

[41]  Aboul Ella Hassanien,et al.  An Automated Fish Species Identification System Based on Crow Search Algorithm , 2018, AMLTA.

[42]  Sarah Webb Deep learning for biology , 2018, Nature.

[43]  Travis Desell,et al.  Toward Using Citizen Scientists to Drive Automated Ecological Object Detection in Aerial Imagery , 2017, 2017 IEEE 13th International Conference on e-Science (e-Science).

[44]  Michele Volpi,et al.  Detecting animals in African Savanna with UAVs and the crowds , 2017, ArXiv.

[45]  Michael Wood,et al.  A review of camera trapping for conservation behaviour research , 2017 .

[46]  P. Grandcolas,et al.  Taxonomic bias in biodiversity data and societal preferences , 2017, Scientific Reports.

[47]  Eibe Frank,et al.  Large-Scale Automatic Species Identification , 2017, Australasian Conference on Artificial Intelligence.

[48]  Malcolm F. Rosenthal,et al.  Taxonomic bias in animal behaviour publications , 2017, Animal Behaviour.

[49]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[50]  Margaret Kosmala,et al.  Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning , 2017, Proceedings of the National Academy of Sciences.

[51]  Steven J. Cooke,et al.  Taxonomic bias and international biodiversity conservation research , 2017 .

[52]  Andrew W. Brown,et al.  Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry , 2017, BMJ Open.

[53]  Hossam M. Hammady,et al.  Rayyan—a web and mobile app for systematic reviews , 2016, Systematic Reviews.

[54]  Joseph W. Brown,et al.  rotl: an R package to interact with the Open Tree of Life data , 2016 .

[55]  Jesús Francisco Vargas-Bonilla,et al.  Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks , 2016, Ecol. Informatics.

[56]  Neal R Haddaway,et al.  The benefits of systematic mapping to evidence-based environmental management , 2016, Ambio.

[57]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[58]  Holger J Schünemann,et al.  Reviews: Rapid! Rapid! Rapid! …and systematic , 2015, Systematic Reviews.

[59]  Peter B. Banks,et al.  Camera Trapping: Wildlife Management and Research , 2014 .

[60]  S. Wich,et al.  Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation , 2012 .

[61]  Francisco Herrera,et al.  Science mapping software tools: Review, analysis, and cooperative study among tools , 2011, J. Assoc. Inf. Sci. Technol..

[62]  Gordon H Guyatt,et al.  GRADE guidelines: 2. Framing the question and deciding on important outcomes. , 2011, Journal of clinical epidemiology.

[63]  Sajid Nazir,et al.  Advances in image acquisition and processing technologies transforming animal ecological studies , 2021, Ecol. Informatics.

[64]  Rafael Luis Ruiz de Castaneda,et al.  Overview of SnakeCLEF 2021: Automatic Snake Species Identification with Country-Level Focus , 2021, CLEF.

[65]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[66]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[67]  Andy South,et al.  rworldmap : a new R package for mapping global data , 2011, R J..

[68]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[69]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[70]  Richard Shine,et al.  Taxonomic chauvinism , 2022 .