Biases on cosmological parameter estimators from galaxy cluster number counts

Sunyaev-Zel'dovich (SZ) surveys are promising probes of cosmology — in particular for Dark Energy (DE) —, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects and maximum likelihood estimators may present biases for such sample sizes. In this work we study estimators from cluster abundance for some cosmological parameters, in particular the DE equation of state parameter w{sub 0}, the amplitude of density fluctuations σ{sub 8}, and the Dark Matter density parameter Ω{sub c}. We begin by deriving an unbinned likelihood for cluster number counts, showing that it is equivalent to the one commonly used in the literature. We use the Monte Carlo approach to determine the presence of bias using this likelihood and study its behavior with both the area and depth of the survey, and the number of cosmological parameters fitted. Our fiducial models are based on the South Pole Telescope (SPT) SZ survey. Assuming perfect knowledge of mass and redshift some estimators have non-negligible biases. For example, the bias of σ{sub 8} corresponds to about 40% of its statistical error bar when fitted together with Ω{sub c} and w{sub 0}. Including a SZmore » mass-observable relation decreases the relevance of the bias, for the typical sizes of current SZ surveys. Considering a joint likelihood for cluster abundance and the so-called ''distance priors'', we obtain that the biases are negligible compared to the statistical errors. However, we show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity. Finally, we compute the confidence regions for the cosmological parameters using Fisher matrix and profile likelihood approaches, showing that they are compatible with the Monte Carlo ones. The results of this work validate the use of the current maximum likelihood methods for present SZ surveys, but highlight the need for further studies for upcoming experiments. To perform the analyses of this work, we developed fast, accurate, and adaptable codes for cluster counts in the framework of the Numerical Cosmology Library.« less

[1]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[2]  S. Majumdar,et al.  Cosmology with the largest galaxy cluster surveys: going beyond Fisher matrix forecasts , 2012, 1210.5586.

[3]  Sophie Papst,et al.  Statistics A Guide To The Use Of Statistical Methods In The Physical Sciences , 2016 .

[4]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[5]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[6]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[7]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[8]  L. Perivolaropoulos,et al.  Testing Lambda CDM with the Growth Function delta(a): Current Constraints , 2007, 0710.1092.

[9]  Scot S. Olivier,et al.  Large Synoptic Survey Telescope: Dark Energy Science Collaboration , 2012 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[12]  WEAK LENSING AS A CALIBRATOR OF THE CLUSTER MASS-TEMPERATURE RELATION , 2002, astro-ph/0206292.

[13]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[14]  H. Hoekstra,et al.  Scaling Relations for Galaxy Clusters: Properties and Evolution , 2013, 1305.3286.

[15]  Christopher J. Miller,et al.  The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints , 2008, 0802.4462.

[16]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  W. Dixon,et al.  Introduction to Mathematical Statistics. , 1964 .

[18]  C. Cunha,et al.  Sensitivity of galaxy cluster dark energy constraints to halo modeling uncertainties , 2009, 0908.0526.

[19]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[20]  IfA,et al.  The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.

[21]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[22]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[23]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[24]  B. Flaugher The Dark Energy Survey , 2005 .

[25]  Yonina C. Eldar,et al.  On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.

[26]  G. Cowan Statistical data analysis , 1998 .

[27]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[28]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[29]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[30]  J. Mohr,et al.  Imaging the Sunyaev–Zel'dovich Effect , 1999, astro-ph/9905255.

[31]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[32]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[33]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[34]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[35]  Wayne Hu,et al.  Sample Variance Considerations for Cluster Surveys , 2002 .

[36]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[37]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[38]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[39]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[40]  R. A. Fox,et al.  Introduction to Mathematical Statistics , 1947 .

[41]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[42]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[43]  J. Uzan The acceleration of the universe and the physics behind it , 2006, astro-ph/0605313.

[44]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[45]  Y. Rephaeli,et al.  Bias-Limited Extraction of Cosmological Parameters , 2012, 1212.0797.

[46]  C E.,et al.  EXPECTATIONS FOR AN INTERFEROMETRIC SUNYAEV-ZELDOVICH EFFECT SURVEY FOR GALAXY CLUSTERS , 2022 .

[47]  Constraints on Quintessence from Future Galaxy Cluster Surveys , 2000 .

[48]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[49]  Cosmological Constraints from the SDSS maxBCG Cluster Catalog , 2009 .

[50]  J. Mohr,et al.  Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys , 2000, astro-ph/0002336.

[51]  D. Coe Fisher Matrices and Confidence Ellipses: A Quick-Start Guide and Software , 2009, 0906.4123.

[52]  J. Weller,et al.  On the validity of cosmological Fisher matrix forecasts , 2012, 1205.3984.