Topology by dissipation

Topological states of fermionic matter can be induced by means of a suitably engineered dissipative dynamics. Dissipation then does not occur as a perturbation, but rather as the main resource for many-body dynamics, providing a targeted cooling into topological phases starting from arbitrary initial states. We explore the concept of topological order in this setting, developing and applying a general theoretical framework based on the system density matrix that replaces the wave function appropriate for the discussion of Hamiltonian ground-state physics. We identify key analogies and differences to the more conventional Hamiltonian scenario. Differences essentially arise from the fact that the properties of the spectrum and of the state of the system are not as tightly related as in the Hamiltonian context. We provide a symmetry-based topological classification of bulk steady states and identify the classes that are achievable by means of quasi-local dissipative processes driving into superfluid paired states. We also explore the fate of the bulk-edge correspondence in the dissipative setting and demonstrate the emergence of Majorana edge modes. We illustrate our findings in one- and two-dimensional models that are experimentally realistic in the context of cold atoms.

[1]  Á. Rivas,et al.  Density-matrix Chern insulators: Finite-temperature generalization of topological insulators , 2013 .

[2]  A. Jensen,et al.  Comparing and contrasting nuclei and cold atomic gases , 2013, 1303.7351.

[3]  J. Ignacio Cirac,et al.  Noise-driven dynamics and phase transitions in fermionic systems , 2012, 1207.1653.

[4]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[5]  Michael Levin,et al.  Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems , 2012, 1212.3324.

[6]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[7]  Jacek K. Furdyna,et al.  The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles , 2012, Nature Physics.

[8]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[9]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[10]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[11]  J. Pytel,et al.  Local-TQO and Stability of Frustration-Free Hamiltonians , 2012 .

[12]  D. Goldhaber-Gordon,et al.  Unconventional Josephson effect in hybrid superconductor-topological insulator devices. , 2012, Physical review letters.

[13]  E. Rico,et al.  Majorana modes in driven-dissipative atomic superfluids with a zero Chern number. , 2012, Physical review letters.

[14]  G. Refael,et al.  Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires , 2011, 1112.5333.

[15]  Meng Cheng,et al.  Topological protection of Majorana qubits , 2011, 1112.3662.

[16]  X. Wen Symmetry-protected topological phases in noninteracting fermion systems , 2011, 1111.6341.

[17]  J. C. Budich,et al.  Failure of protection of Majorana based qubits against decoherence , 2011, 1111.1734.

[18]  Robert König,et al.  Disorder-Assisted Error Correction in Majorana Chains , 2011, 1108.3845.

[19]  M. Fleischhauer,et al.  Critical exponents of steady-state phase transitions in fermionic lattice models , 2011, 1108.2263.

[20]  P. Zoller,et al.  Preparing and probing atomic Majorana fermions and topological order in optical lattices , 2012 .

[21]  C. Chamon,et al.  Decay rates for topological memories encoded with Majorana fermions , 2011, 1107.0288.

[22]  S. Sarma,et al.  Number conserving theory for topologically protected degeneracy in one-dimensional fermions , 2011, 1106.4014.

[23]  M. Fisher,et al.  Majorana zero modes in one-dimensional quantum wires without long-ranged superconducting order , 2011, 1106.2598.

[24]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[25]  V. Gurarie,et al.  Bulk-boundary correspondence of topological insulators from their respective Green’s functions , 2011, 1104.1602.

[26]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[27]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[28]  Clifford modules and symmetries of topological insulators , 2011, 1101.1054.

[29]  V. Gurarie Single-particle Green’s functions and interacting topological insulators , 2010, 1011.2273.

[30]  Alexei Kitaev,et al.  Topological phases of fermions in one dimension , 2010, 1008.4138.

[31]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[32]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[33]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[34]  M. Freedman,et al.  Projective ribbon permutation statistics: A remnant of non-Abelian braiding in higher dimensions , 2010, 1005.0583.

[35]  J. Eisert,et al.  Noise-driven quantum criticality , 2010, 1012.5013.

[36]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[37]  P. Zoller,et al.  Dissipation-induced d-wave pairing of fermionic atoms in an optical lattice. , 2010, Physical review letters.

[38]  M. Stone,et al.  Symmetries, dimensions and topological insulators: the mechanism behind the face of the Bott clock , 2010, 1005.3213.

[39]  Tomaz Prosen,et al.  Spectral theorem for the Lindblad equation for quadratic open fermionic systems , 2010, 1005.0763.

[40]  Andrea Micheli,et al.  Dynamical phase transitions and instabilities in open atomic many-body systems. , 2010, Physical review letters.

[41]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[42]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[43]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[44]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[45]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[46]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[47]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[48]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[49]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[50]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[51]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[52]  Geometric phase in open systems. , 2003, Physical review letters.

[53]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[54]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[55]  Andrew M. Childs,et al.  Universal simulation of Markovian quantum dynamics , 2000, quant-ph/0008070.

[56]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[57]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[58]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[59]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[60]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[61]  P. Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999, quant-ph/9907103.

[62]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[63]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[64]  M. Zirnbauer Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[65]  J. Bellissard,et al.  The noncommutative geometry and the quantum Hall e ect , 1994, cond-mat/9411052.

[66]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[67]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[68]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[69]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[70]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[71]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[72]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .