Anisotropic shearlet transforms for L2 (Rk)

In this paper, we present a new anisotropic generalization of the continuous shearlet transformation. This is achieved by means of an explicit construction of a family of reproducing Lie subgroups of the symplectic group. We study the properties of this new family of anisotropic shearlet transformations. In particular, we provide an analog of the Calderon admissibility condition for anisotropic shearlet reproducing functions.

[1]  Glenn R. Easley,et al.  Radon Transform Inversion using the Shearlet Representation , 2010 .

[2]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[3]  Wojciech Czaja,et al.  Composite wavelet representations for reconstruction of missing data , 2013, Defense, Security, and Sensing.

[4]  Filippo De Mari,et al.  Analysis of the affine transformations of the time-frequency plane , 2001, Bulletin of the Australian Mathematical Society.

[5]  Wojciech Czaja,et al.  Isotropic Shearlet Analogs for L 2(ℝ k ) and Localization Operators , 2012 .

[6]  K. Nowak,et al.  Analytic Features of Reproducing Groups for the Metaplectic Representation , 2006 .

[7]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[8]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[9]  Bin Han,et al.  Adaptive Multiresolution Analysis Structures and Shearlet Systems , 2011, SIAM J. Numer. Anal..

[10]  F. D. Mari,et al.  Admissible vectors for mock metaplectic representations , 2013 .

[11]  Gabriele Steidl,et al.  The Continuous Shearlet Transform in Arbitrary Space Dimensions , 2009, Structured Decompositions and Efficient Algorithms.

[12]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[13]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[14]  Edward H. Bosch,et al.  Tight frames for multiscale and multidirectional image analysis , 2013, Defense, Security, and Sensing.

[15]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[16]  Wojciech Czaja,et al.  Multiscale and multidirectional tight frames for image analysis , 2013 .

[17]  Jeffrey D. Blanchard Minimally Supported Frequency Composite Dilation Wavelets , 2009 .

[18]  Gitta Kutyniok,et al.  Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..

[19]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[20]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[21]  Hamid Krim,et al.  A Shearlet Approach to Edge Analysis and Detection , 2009, IEEE Transactions on Image Processing.

[22]  E. Cordero,et al.  Reproducing Groups for the Metaplectic Representation , 2006 .