An epigenetic mutation responsible for natural variation in ̄ oral symmetry

[1]  A. Lundberg,et al.  Microsatellite markers reveal the potential for kin selection on black grouse leks , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[2]  E. Coen,et al.  The TCP domain: a motif found in proteins regulating plant growth and development. , 1999, The Plant journal : for cell and molecular biology.

[3]  Peter A. Jones,et al.  Cancer-epigenetics comes of age , 1999, Nature Genetics.

[4]  H. Kokko,et al.  Individual mating success, lek stability, and the neglected limitations of statistical power , 1998, Animal Behaviour.

[5]  Eva Jablonka,et al.  Epigenetic inheritance in evolution , 1998 .

[6]  L. Galego,et al.  Genetic control of flower shape in Antirrhinum majus. , 1997, Development.

[7]  M. Ehlers,et al.  Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis , 1997 .

[8]  E. Coen,et al.  Origin of floral asymmetry in Antirrhinum , 1996, Nature.

[9]  H. Kokko,et al.  Kin selection and the evolution of leks: whose success do young males maximize? , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Steven Rothstein,et al.  Control of inflorescence architecture in Antirrhinum , 1996, Nature.

[11]  E. Coen,et al.  Control of flower development and phyllotaxy by meristem identity genes in antirrhinum. , 1995, The Plant Cell.

[12]  J. Goodman,et al.  Alterations in DNA methylation may play a variety of roles in carcinogenesis , 1995, Cell.

[13]  F. Widemo,et al.  Lek size, male mating skew and the evolution of lekking , 1995, Nature.

[14]  M. Petrie,et al.  Improved growth and survival of offspring of peacocks with more elaborate trains , 1994, Nature.

[15]  J. Messing,et al.  Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. , 1994, Genetics.

[16]  E. Coen,et al.  Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum , 1993, Cell.

[17]  M. Lieber,et al.  CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. , 1992, The EMBO journal.

[18]  W. Sutherland,et al.  Evolution of black grouse leks female preferences benefit males in larger leks , 1992 .

[19]  P. Sherman Multiple mating and kin recognition by self-inspection , 1991 .

[20]  Edward K. Wakeland,et al.  Mating patterns in seminatural populations of mice influenced by MHC genotype , 1991, Nature.

[21]  A. Jeffreys,et al.  Hypervariable minisatellite DNA sequences in the Indian peafowl Pavo cristatus. , 1991, Genomics.

[22]  M. Petrie,et al.  Peahens prefer peacocks with elaborate trains , 1991, Animal Behaviour.

[23]  E. Coen,et al.  floricaula: A homeotic gene required for flower development in antirrhinum majus , 1990, Cell.

[24]  R. D. Alexander,et al.  Epigenetic rules and Darwinian algorithms: The adaptive study of learning and development , 1990 .

[25]  A. Grafen Do animals really recognize kin? , 1990, Animal Behaviour.

[26]  E. Selker,et al.  Repeat-induced G-C to A-T mutations in Neurospora. , 1989, Science.

[27]  M. Frohman,et al.  Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  U. Gubler A one tube reaction for the synthesis of blunt-ended double-stranded cDNA. , 1988, Nucleic acids research.

[29]  R. Grosberg,et al.  The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate , 1986, Nature.

[30]  P. Sherman,et al.  Kin Recognition by Phenotype Matching , 1983, The American Naturalist.

[31]  W. Getz,et al.  Genetic kin recognition: honey bees discriminate between full and half sisters , 1983, Nature.

[32]  Self-incompatibility in Linaria , 1982, Heredity.

[33]  H. Vries,et al.  Species and Varieties, Their Origin by Mutation , 1905 .