Automatic Sequences in Negative Bases and Proofs of Some Conjectures of Shevelev

We discuss the use of negative bases in automatic sequences. Recently the theorem-prover Walnut has been extended to allow the use of base (—k) to express variables, thus permitting quantification over ℤ instead of ℕ. This enables us to prove results about two-sided (bi-infinite) automatic sequences. We first explain the theory behind negative bases in Walnut. Next, we use this new version of Walnut to give a very simple proof of a strengthened version of a theorem of Shevelev. We use our ideas to resolve two open problems of Shevelev from 2017. We also reprove a 2000 result of Shut involving bi-infinite binary words.

[1]  J. Shallit The Logical Approach to Automatic Sequences , 2022 .

[2]  J. Shallit,et al.  Pseudoperiodic Words and a Question of Shevelev , 2022, ArXiv.

[3]  S'ebastien Labb'e,et al.  A numeration system for Fibonacci-like Wang shifts , 2021, WORDS.

[4]  S. Finch The On-Line Encyclopedia of Integer Sequences , 2021, The Mathematical Intelligencer.

[5]  Xifeng Su,et al.  On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals , 2020, Electronic Research Archive.

[6]  Jeffrey Shallit,et al.  Subword complexity and power avoidance , 2018, Theor. Comput. Sci..

[7]  Hamoon Mousavi,et al.  Automatic Theorem Proving in Walnut , 2016, ArXiv.

[8]  V. Shevelev Two analogs of Thue-Morse sequence , 2016, 1603.04434.

[9]  Jeffrey Shallit,et al.  Decision algorithms for Fibonacci-automatic Words, I: Basic results , 2016, RAIRO Theor. Informatics Appl..

[10]  Jeffrey Shallit,et al.  Decision Algorithms for Fibonacci-Automatic Words, with Applications to Pattern Avoidance , 2014, ArXiv.

[11]  V. Shevelev Equations of the form $t(x+a)=t(x)$ and $t(x+a)=1-t(x)$ for Thue-Morse sequence , 2009, 0907.0880.

[12]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[13]  R. Tijdeman,et al.  The Tribonacci substitution. , 2005 .

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  A. M. Shur,et al.  The structure of the set of cube-free $ Z$-words in a two-letter alphabet , 2000 .

[16]  Арсений Михайлович Шур,et al.  Структура множества бескубных $Z$-слов в двухбуквенном алфавите@@@The structure of the set of cube-free $Z$-words in a two-letter alphabet , 2000 .

[17]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[18]  M. Bunder Zeckendorf representations using negative fibonacci numbers , 1992 .

[19]  C. G. Lekkerkerker,et al.  Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .

[20]  Cristiano Maggi ON SYNCHRONIZED SEQUENCES , 2022 .