Automatic Sequences in Negative Bases and Proofs of Some Conjectures of Shevelev
暂无分享,去创建一个
[1] J. Shallit. The Logical Approach to Automatic Sequences , 2022 .
[2] J. Shallit,et al. Pseudoperiodic Words and a Question of Shevelev , 2022, ArXiv.
[3] S'ebastien Labb'e,et al. A numeration system for Fibonacci-like Wang shifts , 2021, WORDS.
[4] S. Finch. The On-Line Encyclopedia of Integer Sequences , 2021, The Mathematical Intelligencer.
[5] Xifeng Su,et al. On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals , 2020, Electronic Research Archive.
[6] Jeffrey Shallit,et al. Subword complexity and power avoidance , 2018, Theor. Comput. Sci..
[7] Hamoon Mousavi,et al. Automatic Theorem Proving in Walnut , 2016, ArXiv.
[8] V. Shevelev. Two analogs of Thue-Morse sequence , 2016, 1603.04434.
[9] Jeffrey Shallit,et al. Decision algorithms for Fibonacci-automatic Words, I: Basic results , 2016, RAIRO Theor. Informatics Appl..
[10] Jeffrey Shallit,et al. Decision Algorithms for Fibonacci-Automatic Words, with Applications to Pattern Avoidance , 2014, ArXiv.
[11] V. Shevelev. Equations of the form $t(x+a)=t(x)$ and $t(x+a)=1-t(x)$ for Thue-Morse sequence , 2009, 0907.0880.
[12] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[13] R. Tijdeman,et al. The Tribonacci substitution. , 2005 .
[14] David Thomas,et al. The Art in Computer Programming , 2001 .
[15] A. M. Shur,et al. The structure of the set of cube-free $ Z$-words in a two-letter alphabet , 2000 .
[16] Арсений Михайлович Шур,et al. Структура множества бескубных $Z$-слов в двухбуквенном алфавите@@@The structure of the set of cube-free $Z$-words in a two-letter alphabet , 2000 .
[17] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[18] M. Bunder. Zeckendorf representations using negative fibonacci numbers , 1992 .
[19] C. G. Lekkerkerker,et al. Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .
[20] Cristiano Maggi. ON SYNCHRONIZED SEQUENCES , 2022 .