Self-assembled multivalent RGD-peptide arrays--morphological control and integrin binding.

We report the synthesis of four different RGD peptide derivatives which spontaneously self-assemble into nanoscale architectures. Depending on the information programmed into the molecular-scale building blocks by organic synthesis, these compounds assemble into different nanoscale morphologies. This process can be fully understood using multiscale modelling which provides predictive insight into subtle differences, such as whether the compounds form spherical micelles, rod-like cylinders or tubular assemblies, and predicts experimentally observed critical aggregation concentrations (CACs). We then probe the multivalent binding of these assemblies to integrin proteins and demonstrate that the spherical micellar assemblies perform well in our solution-phase integrin binding assay as a consequence of self-assembled multivalency, with the CAC switching-on the binding. Conversely, the cylindrical assemblies do not work in this assay. As such, the nanoscale morphology controls the apparent ability to perform as a self-assembled multivalent ligand array.

[1]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[2]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[3]  R. Haag,et al.  Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake. , 2011, Journal of the American Chemical Society.

[4]  R. Haag,et al.  Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. , 2002, Angewandte Chemie.

[5]  George M Whitesides,et al.  Nanoscience, nanotechnology, and chemistry. , 2005, Small.

[6]  F. Diederich,et al.  Amphiphilic dendrimers: novel self-assembling vectors for efficient gene delivery. , 2003, Angewandte Chemie.

[7]  F. Bates,et al.  Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles. , 2009, Biomacromolecules.

[8]  Klaas Nicolay,et al.  Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[9]  T. Darden,et al.  Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions , 2000 .

[10]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[11]  L G Griffith,et al.  Cell adhesion and motility depend on nanoscale RGD clustering. , 2000, Journal of cell science.

[12]  Erkki Ruoslahti,et al.  Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs , 2010, Science.

[13]  Lin Yu,et al.  Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. , 2010, Biomaterials.

[14]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[16]  Klaas Nicolay,et al.  Synergistic targeting of alphavbeta3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. , 2010, Nano letters.

[17]  A. Mata,et al.  Bioactive Nanofibers Instruct Cells to Proliferate and Differentiate During Enamel Regeneration , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  Maurizio Fermeglia,et al.  Polymer-clay nanocomposites: a multiscale molecular modeling approach. , 2007, The journal of physical chemistry. B.

[19]  M. H. Ernst,et al.  Static and dynamic properties of dissipative particle dynamics , 1997, cond-mat/9702036.

[20]  Samuel I Stupp,et al.  Presentation of RGDS epitopes on self-assembled nanofibers of branched peptide amphiphiles. , 2006, Biomacromolecules.

[21]  Maurizio Fermeglia,et al.  Hydrophobically modified dendrons: developing structure-activity relationships for DNA binding and gene transfection. , 2011, Molecular pharmaceutics.

[22]  T. Mikkelsen,et al.  Targeting integrins in malignant glioma , 2010, Targeted Oncology.

[23]  E. Sackmann,et al.  Adhesion of Arg-Gly-Asp (RGD) Peptide Vesicles onto an Integrin Surface: Visualization of the Segregation of RGD Ligands into the Adhesion Plaques by Fluorescence , 2003 .

[24]  Nathan P. Gabrielson,et al.  Multiplexed Supramolecular Self-assembly for Non-viral Gene Delivery , 2022 .

[25]  R. D. Groot,et al.  Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. , 2001, Biophysical journal.

[26]  R. Hynes A reevaluation of integrins as regulators of angiogenesis , 2002, Nature Medicine.

[27]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[28]  Samuel I Stupp,et al.  Molecular simulation study of peptide amphiphile self-assembly. , 2008, The journal of physical chemistry. B.

[29]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[30]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[31]  Maurizio Fermeglia,et al.  Morphology prediction of block copolymers for drug delivery by mesoscale simulations , 2010 .

[32]  Sabrina Pricl,et al.  Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand "sacrifice" and screening can enhance binding. , 2009, Journal of the American Chemical Society.

[33]  M. Parsons,et al.  Adhesion dynamics: mechanisms and measurements. , 2008, The international journal of biochemistry & cell biology.

[34]  B. Ninham,et al.  Theory of self-assembly of lipid bilayers and vesicles. , 1977, Biochimica et biophysica acta.

[35]  Sabrina Pricl,et al.  Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery , 2010 .

[36]  J. Voskuhl,et al.  Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. , 2010, Chemistry.

[37]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[38]  David K Smith,et al.  Self-assembling ligands for multivalent nanoscale heparin binding. , 2011, Angewandte Chemie.

[39]  A. M. Carmona-Ribeiro Biomimetic nanoparticles: preparation, characterization and biomedical applications , 2010, International journal of nanomedicine.

[40]  Kenneth R. Hall,et al.  An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases , 2003 .

[41]  Maurizio Fermeglia,et al.  Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .

[42]  J. Capeau,et al.  Liposomes enhance delivery and expression of an RGD-oligolysine gene transfer vector in human tracheal cells , 1998, Gene Therapy.

[43]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[44]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[45]  D. Melton,et al.  Endothelial signaling during development , 2003, Nature Medicine.

[46]  Daniel J. Welsh,et al.  Comparing dendritic and self-assembly strategies to multivalency--RGD peptide-integrin interactions. , 2011, Organic & biomolecular chemistry.

[47]  Ehud Gazit,et al.  Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. , 2007, Trends in biotechnology.

[48]  Li Zhang,et al.  Ligand Binding to Integrins* , 2000, The Journal of Biological Chemistry.

[49]  Sheila MacNeil,et al.  Production and performance of biomaterials containing RGD peptides , 2008 .

[50]  Ming Zhao,et al.  Novel nano-materials, RGD-tetrapeptide-modified 17β-amino-11α-hydroxyandrost-1,4-diene-3-one: synthesis, self-assembly based nano-images and in vivo anti-osteoporosis evaluation , 2012 .

[51]  Patrick B. Warren,et al.  Dissipative particle dynamics , 1998 .

[52]  J. Hartgerink,et al.  Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. , 2006, Journal of the American Chemical Society.

[53]  Sabrina Pricl,et al.  Quantifying the effect of surface ligands on dendron-DNA interactions: insights into multivalency through a combined experimental and theoretical approach. , 2010, Chemistry.

[54]  F. Diederich,et al.  Effects of structural modification on gene transfection and self-assembling properties of amphiphilic dendrimers. , 2006, Organic & biomolecular chemistry.

[55]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[56]  Thomas J Webster,et al.  Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. , 2009, Biomaterials.

[57]  B. Geiger,et al.  Supramolecular crafting of cell adhesion. , 2007, Biomaterials.

[58]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[59]  N. Voelcker,et al.  Novel glycodendrimers self-assemble to nanoparticles which function as polyvalent ligands in vitro and in vivo. , 2002, Angewandte Chemie.

[60]  J. Collier,et al.  Directed intermixing in multicomponent self-assembling biomaterials. , 2011, Biomacromolecules.

[61]  I. Hamley,et al.  Hydrogelation of self-assembling RGD-based peptides , 2011 .

[62]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[63]  Maurizio Fermeglia,et al.  Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites , 2009 .

[64]  Y. Lim,et al.  Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. , 2007, Angewandte Chemie.

[65]  Y. Lim,et al.  Carbohydrate-coated supramolecular structures: transformation of nanofibers into spherical micelles triggered by guest encapsulation. , 2007, Journal of the American Chemical Society.

[66]  C. Curti,et al.  Targeting αvβ3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides , 2010 .

[67]  Robert Langer,et al.  Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. , 2011, Biomaterials.

[68]  L. Brunsveld,et al.  Supramolecular chemical biology; bioactive synthetic self-assemblies. , 2013, Organic & biomolecular chemistry.

[69]  Maurizio Fermeglia,et al.  Multiscale molecular modeling in nanostructured material design and process system engineering , 2009, Comput. Chem. Eng..

[70]  Rena N. D'Souza,et al.  Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. , 2010, Journal of the American Chemical Society.

[71]  J. Engberts,et al.  The use of Nile Red to monitor the aggregation behavior in ternary surfactant–water–organic solvent systems , 2005 .

[72]  Sonya Cressman,et al.  Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells. , 2009, Bioconjugate chemistry.

[73]  D. Cheresh,et al.  Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels , 1994, Cell.

[74]  L. Brunsveld,et al.  A supramolecular polymer as a self-assembling polyvalent scaffold. , 2009, Angewandte Chemie.

[75]  Myongsoo Lee,et al.  Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands. , 2005, Journal of the American Chemical Society.

[76]  Maurizio Fermeglia,et al.  Size and shape matter! a multiscale molecular simulation approach to polymer nanocomposites , 2012 .

[77]  Wei Wang,et al.  Probing for Integrin αvβ3 Binding of RGD Peptides Using Fluorescence Polarization , 2005 .

[78]  R. D. Groot Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants , 2003 .

[79]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[80]  D. Seliktar,et al.  Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. , 2009, Biomacromolecules.

[81]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  Mi Zhou,et al.  Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. , 2009, Biomaterials.

[83]  M. Fermeglia,et al.  A complete multiscale modelling approach for polymer-clay nanocomposites. , 2009, Chemistry.

[84]  Maurizio Fermeglia,et al.  Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation , 2004 .

[85]  John B. Wong,et al.  Stabilized integrin-targeting ternary LPD (lipopolyplex) vectors for gene delivery designed to disassemble within the target cell. , 2009, Bioconjugate chemistry.

[86]  Maurizio Fermeglia,et al.  Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .

[87]  Anna Barnard,et al.  Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. , 2012, Angewandte Chemie.

[88]  E. Sackmann,et al.  Intervesicle cross-linking with integrin alpha IIb beta 3 and cyclic-RGD-lipopeptide. A model of cell-adhesion processes. , 2000, Biochemistry.

[89]  Horst Kessler,et al.  The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. , 2002, Angewandte Chemie.

[90]  Omid C Farokhzad,et al.  Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. , 2011, Accounts of chemical research.

[91]  Hao Yan,et al.  DNA self-assembly for nanomedicine. , 2010, Advanced drug delivery reviews.

[92]  Egbert J Boekema,et al.  Light-responsive capture and release of DNA in a ternary supramolecular complex. , 2011, Angewandte Chemie.

[93]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[94]  Maurizio Fermeglia,et al.  To the nanoscale, and beyond!: Multiscale molecular modeling of polymer-clay nanocomposites , 2007 .

[95]  E. Sackmann,et al.  Selective adhesion of endothelial cells to artificial membranes with a synthetic RGD-lipopeptide. , 2001, Chemistry.

[96]  Kenneth M. Yamada,et al.  Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function , 1995, Science.

[97]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[98]  Y. Lim,et al.  A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. , 2008, Organic & biomolecular chemistry.

[99]  E. Ruoslahti,et al.  Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. , 1998, Science.

[100]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[101]  Horst Kessler,et al.  N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists , 1999 .

[102]  Yu-cheng Tseng,et al.  Self-assembled lipid nanomedicines for siRNA tumor targeting. , 2009, Journal of biomedical nanotechnology.

[103]  R. Das,et al.  Supramolecular gels ‘in action’ , 2009 .

[104]  Alshakim Nelson,et al.  A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. , 2004, Journal of the American Chemical Society.

[105]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[106]  Julián Valero,et al.  Binding to protein surfaces by supramolecular multivalent scaffolds. , 2008, Current opinion in chemical biology.

[107]  R L Juliano,et al.  Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Luc Brunsveld,et al.  Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.

[109]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[110]  G. Whitesides,et al.  The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides , 1992 .

[111]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[112]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[113]  O. Scherman,et al.  Supramolecular Glycopolymers in Water: A Reversible Route Toward Multivalent Carbohydrate–Lectin Conjugates Using Cucurbit[8]uril , 2011 .

[114]  Daniel W Pack,et al.  Synergistic effects in gene delivery-a structure-activity approach to the optimisation of hybrid dendritic-lipidic transfection agents. , 2008, Chemical communications.