Cascaded light propagation volumes for real-time indirect illumination

This paper introduces a new scalable technique for approximating indirect illumination in fully dynamic scenes for real-time applications, such as video games. We use lattices and spherical harmonics to represent the spatial and angular distribution of light in the scene. Our technique does not require any precomputation and handles large scenes with nested lattices. It is primarily targeted at rendering single-bounce indirect illumination with occlusion, but can be extended to handle multiple bounces and participating media. We demonstrate that our method produces plausible results even when running on current game console hardware with a budget of only a few milliseconds for performing all computation steps for indirect lighting. We evaluate our technique and show it in combination with a variety of popular real-time rendering techniques.

[1]  Matt Pharr,et al.  Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation , 2005 .

[2]  Morgan McGuire,et al.  Hardware-accelerated global illumination by image space photon mapping , 2009, High Performance Graphics.

[3]  Jaroslav Krivánek,et al.  Real‐time Shading with Filtered Importance Sampling , 2008, Comput. Graph. Forum.

[4]  Raanan Fattal,et al.  Participating media illumination using light propagation maps , 2009, ACM Trans. Graph..

[5]  Kavita Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[6]  K. Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[7]  Frank Losasso,et al.  Geometry clipmaps , 2004, ACM Trans. Graph..

[8]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, ACM Trans. Graph..

[9]  François X. Sillion,et al.  A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and Object Clusters , 1995, IEEE Trans. Vis. Comput. Graph..

[10]  Hans-Peter Seidel,et al.  Interactive Global Illumination Using Implicit Visibility , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[11]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[12]  Adam Arbree,et al.  To appear in the ACM SIGGRAPH conference proceedings Lightcuts: A Scalable Approach to Illumination , 2022 .

[13]  Marc Stamminger,et al.  Splatting indirect illumination , 2006, I3D '06.

[14]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[15]  Frank Losasso,et al.  Geometry clipmaps: terrain rendering using nested regular grids , 2004, SIGGRAPH 2004.

[16]  Martin Mittring,et al.  Finding next gen: CryEngine 2 , 2007, SIGGRAPH Courses.

[17]  P. Hanrahan,et al.  On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[19]  Michael Todd Bunnell,et al.  Dynamic Ambient Occlusion and Indirect Lighting , 2005 .

[20]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[21]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[22]  Naga K. Govindaraju,et al.  Image-Based Proxy Accumulation for Real-Time Soft Global Illumination , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[23]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, SIGGRAPH 2009.

[24]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH 2008.

[25]  Jaroslav Krivánek,et al.  Real-time shading with filtered importance sampling , 2007, SIGGRAPH '07.

[26]  Chris Wyman,et al.  Hierarchical Image‐Space Radiosity for Interactive Global Illumination , 2009, Comput. Graph. Forum.

[27]  Frédo Durand,et al.  Implicit visibility and antiradiance for interactive global illumination , 2007, SIGGRAPH 2007.

[28]  Hans-Peter Seidel,et al.  Interactive Global Illumination Using Implicit Visibility , 2007 .

[29]  Natalya Tatarchuk Advances in real-time rendering in 3D graphics and games I , 2009, SIGGRAPH '09.

[30]  Kei Iwasaki,et al.  Precomputed Radiance Transfer for Dynamic Scenes Taking into Account Light Interreflection , 2007, Rendering Techniques.

[31]  Alfred L. Crosbie,et al.  Modified discrete ordinates solution of radiative transfer in two-dimensional rectangular enclosures , 1997 .

[32]  Robert J. Schalkoff,et al.  Lattice-Boltzmann Lighting , 2004, Rendering Techniques.

[33]  Frédo Durand,et al.  Implicit visibility and antiradiance for interactive global illumination , 2007, ACM Trans. Graph..

[34]  Naga K. Govindaraju,et al.  Image-Based Proxy Accumulation for Real-Time Soft Global Illumination , 2007 .

[35]  Min H. Kim,et al.  Perceptual influence of approximate visibility in indirect illumination , 2009, TAP.

[36]  Carsten Dachsbacher,et al.  Reflective shadow maps , 2005, I3D '05.

[37]  Hans-Peter Seidel,et al.  Approximating dynamic global illumination in image space , 2009, I3D '09.

[38]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[39]  Hans-Peter Seidel,et al.  Micro-rendering for scalable, parallel final gathering , 2009, ACM Trans. Graph..

[40]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[41]  Chris Wyman,et al.  Multiresolution splatting for indirect illumination , 2009, I3D '09.

[42]  Louis Bavoil,et al.  Image-space horizon-based ambient occlusion , 2008, SIGGRAPH '08.

[43]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.