Domain specificity in visual cortex.

We investigated the prevalence and specificity of category-selective regions in human visual cortex. In the broadest survey to date of category selectivity in visual cortex, 12 participants were scanned with functional magnetic resonance imaging while viewing scenes and 19 different object categories in a blocked-design experiment. As expected, we found selectivity for faces in the fusiform face area (FFA), for scenes in the parahippocampal place area (PPA), and for bodies in the extrastriate body area (EBA). In addition, we describe 3 main new findings. First, evidence for the selectivity of the FFA, PPA, and EBA was strengthened by the finding that each area responded significantly more strongly to its preferred category than to the next most effective of the remaining 19 stimulus categories tested. Second, a region in the middle temporal gyrus that has been reported to respond significantly more strongly to tools than to animals did not respond significantly more strongly to tools than to other nontool categories (such as fruits and vegetables), casting doubt on the characterization of this region as tool selective. Finally, we did not find any new regions in the occipitotemporal pathway that were strongly selective for other categories. Taken together, these results demonstrate both the strong selectivity of a small number of regions and the scarcity of such regions in visual cortex.

[1]  Sandy Lovie How the mind works , 1980, Nature.

[2]  T. Shallice,et al.  Category specific semantic impairments. , 1998, Brain : a journal of neurology.

[3]  R. Berndt,et al.  Category-specific naming deficit following cerebral infarction , 1985, Nature.

[4]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[5]  Zinovij G. Sheftel,et al.  Functional Analysis , 2021, Encyclopedia of Autism Spectrum Disorders.

[6]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[7]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[8]  T. Allison,et al.  Word recognition in the human inferior temporal lobe , 1994, Nature.

[9]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[10]  T. Allison,et al.  Functional magnetic resonance imaging of the differential sensitivity of human visual cortex to faces, letterstrings, and textures , 1996, NeuroImage.

[11]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[12]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[13]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[14]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[15]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[16]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[17]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[18]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[19]  M. Tarr,et al.  Can Face Recognition Really be Dissociated from Object Recognition? , 1999, Journal of Cognitive Neuroscience.

[20]  T. Allison,et al.  Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. , 1999, Cerebral cortex.

[21]  N. Kanwisher,et al.  Brain Imaging , 2003, Encyclopedia of Behavioral Medicine.

[22]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[23]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L L Chao,et al.  Are face-responsive regions selective only for faces? , 1999, Neuroreport.

[25]  Isabel Gauthier,et al.  What constrains the organization of the ventral temporal cortex? , 2000, Trends in Cognitive Sciences.

[26]  K. Nakayama,et al.  RESPONSE PROPERTIES OF THE HUMAN FUSIFORM FACE AREA , 2000, Cognitive neuropsychology.

[27]  Leslie G. Ungerleider,et al.  Distinguishing the Functional Roles of Multiple Regions in Distributed Neural Systems for Visual Working Memory , 2000, NeuroImage.

[28]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[29]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[30]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[31]  T. Schweizer,et al.  Musical instrument naming impairments: the crucial exception to the living/nonliving dichotomy in category-specific agnosia. , 2000, Brain and cognition.

[32]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[33]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[34]  N. Kanwisher,et al.  The Human Body , 2001 .

[35]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[36]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[37]  M. Farah,et al.  Neural Specialization for Letter Recognition , 2002, Journal of Cognitive Neuroscience.

[38]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[39]  Pablo Rychter Modularidad y teoría computacional de la mente en la obra de Jerry Fodor: Nota crítica en torno a The Mind Doesn't Work that Way , 2002 .

[40]  Joseph T Devlin,et al.  The myth of the visual word form area , 2003, NeuroImage.

[41]  Bradford Z. Mahon,et al.  The organization of conceptual knowledge: the evidence from category-specific semantic deficits , 2003, Trends in Cognitive Sciences.

[42]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[43]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[44]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[45]  Charles Pelizzari,et al.  Transient Inability to Distinguish Between Faces: Electrophysiologic Studies , 2003, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[46]  N. Kanwisher,et al.  The fusiform face area subserves face perception, not generic within-category identification , 2004, Nature Neuroscience.

[47]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[48]  Cosimo Urgesi,et al.  Magnetic Stimulation of Extrastriate Body Area Impairs Visual Processing of Nonfacial Body Parts , 2004, Current Biology.

[49]  D. Perrett,et al.  Rapid serial visual presentation for the determination of neural selectivity in area STSa. , 2004, Progress in brain research.

[50]  Rafael Malach,et al.  Functional analysis of the periphery effect in human building related areas , 2004, Human brain mapping.

[51]  Ethan M. Meyers,et al.  Contextually Evoked Object-Specific Responses in Human Visual Cortex , 2004, Science.

[52]  Joseph T Devlin,et al.  The pro and cons of labelling a left occipitotemporal region: “the visual word form area” , 2004, NeuroImage.

[53]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[54]  Sharon L. Thompson-Schill,et al.  Learning Places from Views: Variation in Scene Processing as a Function of Experience and Navigational Ability , 2005, Journal of Cognitive Neuroscience.

[55]  R. Kakigi,et al.  Electrophysiological studies on human pain perception , 2005, Clinical Neurophysiology.

[56]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[57]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[58]  David J. M. Kraemer,et al.  Musical imagery: Sound of silence activates auditory cortex , 2005, Nature.

[59]  M. Behrmann,et al.  Congenital prosopagnosia: face-blind from birth , 2005, Trends in Cognitive Sciences.

[60]  P. Downing,et al.  Within‐subject reproducibility of category‐specific visual activation with functional MRI , 2005, Human brain mapping.

[61]  Rebecca F. Schwarzlose,et al.  Separate face and body selectivity on the fusiform gyrus. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Karl J. Friston,et al.  Two distinct neural mechanisms for category-selective responses. , 2006, Cerebral cortex.

[63]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.