Surface-based approaches to spatial localization and registration in primate cerebral cortex

Explicit surface reconstructions provide invaluable substrates for visualizing and analyzing the complex convolutions of cerebral cortex. This report illustrates the utility of surface-based atlases of human and macaque monkey for representing many aspects of cortical organization and function. These include a variety of cortical partitioning schemes plus an open-ended collection of complex activation patterns obtained from fMRI studies. Surface-based registration from one hemisphere to an atlas provides powerful approach to (i) objectively and quantitatively representing both the consistencies and the variability of the pattern of convolutions and the patterns of functional activation from any given task; and (ii) making comparisons across species and evaluating candidate homologies between cortical areas or functionally delineated regions.

[1]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[2]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[3]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[4]  Abraham Z. Snyder,et al.  Surface-Based Analyses of the Human Cerebral Cortex , 1999 .

[5]  Alan Peters,et al.  Comparative Structure and Evolution of Cerebral Cortex, Part I , 1990, Cerebral Cortex.

[6]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[7]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[8]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[9]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[10]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[11]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[12]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[13]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[14]  S. Koslow,et al.  Databasing the brain : from data to knowledge (neuroinformatics) , 2005 .

[15]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[16]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[18]  Alan Peters,et al.  Comparative structure and evolution of cerebral cortex , 1990 .

[19]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[20]  A. Dale,et al.  Regional and progressive thinning of the cortical ribbon in Huntington’s disease , 2002, Neurology.

[21]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[22]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[23]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[24]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[25]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[26]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[27]  D C Van Essen,et al.  'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[29]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[31]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[32]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[33]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[34]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[35]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[36]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[37]  R. Thatcher Functional neuroimaging : technical foundations , 1994 .

[38]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[39]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[40]  J B Woodward,et al.  The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[42]  Marianna D. Eddy,et al.  Regionally Localized Thinning of the Cerebral Cortex in Schizophrenia , 2003 .

[43]  M. Miller,et al.  Landmark Matching via Large Deformation Diffeomorphisms on the Sphere , 2004 .

[44]  David A. Rottenberg,et al.  Cortical surface flattening using least square conformal mapping with minimal metric distortion , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[45]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[46]  M. Raichle,et al.  Anatomic Localization and Quantitative Analysis of Gradient Refocused Echo-Planar fMRI Susceptibility Artifacts , 1997, NeuroImage.