(Nearly) Sample-Optimal Sparse Fourier Transform in Any Dimension; RIPless and Filterless

In this paper, we consider the extensively studied problem of computing a k-sparse approximation to the d-dimensional Fourier transform of a length n signal. Our algorithm uses O(k log k log n) samples, is dimension-free, operates for any universe size, and achieves the strongest ℓ_∞/ℓ_2 guarantee, while running in a time comparable to the Fast Fourier Transform. In contrast to previous algorithms which proceed either via the Restricted Isometry Property or via filter functions, our approach offers a fresh perspective to the sparse Fourier Transform problem.

[1]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[2]  Mikhail Kapralov,et al.  Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[3]  Vasileios Nakos,et al.  Deterministic Sparse Fourier Transform with an ℓ∞ Guarantee , 2020, ICALP.

[4]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[5]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[6]  Mikhail Kapralov,et al.  Sparse fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time , 2016, STOC.

[7]  David George Voelz,et al.  Computational Fourier Optics: A MATLAB Tutorial , 2011 .

[8]  Eyal Kushilevitz,et al.  Learning decision trees using the Fourier spectrum , 1991, STOC '91.

[9]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[10]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[11]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[12]  Kannan Ramchandran,et al.  A robust R-FFAST framework for computing a k-sparse n-length DFT in O(k log n) sample complexity using sparse-graph codes , 2014, 2014 IEEE International Symposium on Information Theory.

[13]  Zhao Song,et al.  A Robust Sparse Fourier Transform in the Continuous Setting , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[14]  Mark A. Iwen,et al.  A deterministic sparse FFT for functions with structured Fourier sparsity , 2017, Adv. Comput. Math..

[15]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[16]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[17]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[18]  Xue Chen,et al.  Fourier-Sparse Interpolation without a Frequency Gap , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[20]  Mark A. Iwen,et al.  A New Class of Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations with Guarantees , 2017, 1706.02740.

[21]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[22]  J. Goodman Introduction to Fourier optics , 1969 .

[23]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[24]  Shravas Rao,et al.  Improved Lower Bounds for the Restricted Isometry Property of Subsampled Fourier Matrices , 2019, ArXiv.

[25]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.

[26]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[27]  Volkan Cevher,et al.  What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid , 2015, Algorithmica.

[28]  Ameya Velingker,et al.  Dimension-independent Sparse Fourier Transform , 2019, SODA.

[29]  Oded Regev,et al.  The Restricted Isometry Property of Subsampled Fourier Matrices , 2015, SODA.

[30]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity , 2008, ArXiv.

[31]  Venkatesan Guruswami,et al.  Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes , 2012, SIAM J. Comput..

[32]  Mark A. Iwen,et al.  A deterministic sub-linear time sparse fourier algorithm via non-adaptive compressed sensing methods , 2007, SODA '08.

[33]  Moses Charikar,et al.  Finding frequent items in data streams , 2002, Theor. Comput. Sci..

[34]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[35]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[36]  Eric Price,et al.  Active Regression via Linear-Sample Sparsification , 2017, COLT.

[37]  J. Bourgain An Improved Estimate in the Restricted Isometry Problem , 2014 .

[38]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[39]  Piotr Indyk,et al.  (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.

[40]  Shafi Goldwasser,et al.  Proving hard-core predicates using list decoding , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[41]  R. Vershynin,et al.  Signal Recovery from Inaccurate and Incomplete Measurements via Regularized Orthogonal Matching Pursuit , 2010 .

[42]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[43]  Volkan Cevher,et al.  What's the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid , 2012, APPROX-RANDOM.

[44]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[45]  Xue Chen,et al.  Estimating the Frequency of a Clustered Signal , 2019, ICALP.

[46]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[47]  Mike E. Davies,et al.  A simple, efficient and near optimal algorithm for compressed sensing , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[48]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[49]  Kyle Luh,et al.  An Improved Lower Bound for Sparse Reconstruction from Subsampled Hadamard Matrices , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[50]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[51]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[52]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[53]  Piotr Indyk,et al.  Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform , 2015, SODA.

[54]  Piotr Indyk,et al.  Sample-Optimal Fourier Sampling in Any Constant Dimension , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[55]  George O. Reynolds,et al.  The New Physical Optics Notebook: Tutorials in Fourier Optics , 1989 .

[56]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[57]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[58]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[59]  Kyle Luh,et al.  Sparse Reconstruction from Hadamard Matrices: A Lower Bound , 2019, ArXiv.

[60]  Ameya Velingker,et al.  A universal sampling method for reconstructing signals with simple Fourier transforms , 2018, STOC.

[61]  Amir Akramin Shafie,et al.  MRI Reconstruction Using Discrete Fourier Transform: A tutorial , 2008 .