Parity-Time Symmetric Photonics

The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to complex quantum potentials, photonics provides an ideal platform for the visualization of many conceptually striking predictions from non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT-symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT-symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT-symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, biochemical sensing and healthcare are also discussed.

[1]  Jianming Wen,et al.  Anti-parity–time symmetry with flying atoms , 2016 .

[2]  Stefano Longhi,et al.  Half-spectral unidirectional invisibility in non-Hermitian periodic optical structures. , 2015, Optics letters.

[3]  Nonlinear parity-time-symmetric transition in finite-size optical couplers. , 2015, Optics letters.

[4]  Shanhui Fan,et al.  Robust wireless power transfer using a nonlinear parity–time-symmetric circuit , 2017, Nature.

[5]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[6]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[7]  Lan Yang,et al.  Chiral modes and directional lasing at exceptional points , 2016, Proceedings of the National Academy of Sciences.

[8]  Henning Schomerus,et al.  Topologically protected midgap states in complex photonic lattices. , 2013, Optics letters.

[9]  Guang-Yao Huang,et al.  Topological invariance and global Berry phase in non-Hermitian systems , 2013, 1502.00443.

[10]  M. Berry Mode degeneracies and the petermann excess-noise factor for unstable lasers , 2003 .

[11]  M. Berry Optical polarization evolution near a non-Hermitian degeneracy , 2011 .

[12]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[13]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[14]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[15]  Xue-Feng Zhu,et al.  P T -Symmetric Acoustics , 2014 .

[16]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[17]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[18]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[19]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[20]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[21]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[22]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[23]  Han Zhao,et al.  Metawaveguide for Asymmetric Interferometric Light-Light Switching. , 2016, Physical review letters.

[24]  Li Ge,et al.  Nonlinear modal interactions in parity-time (PT) symmetric lasers , 2016, Scientific Reports.

[25]  R. Shankar,et al.  Principles of Quantum Mechanics , 2010 .

[26]  Jianke Yang,et al.  Nonlinear waves in PT -symmetric systems , 2016, 1603.06826.

[27]  J Knittel,et al.  Cavity optomechanical magnetometer. , 2012, Physical review letters.

[28]  Li Ge,et al.  Pump-induced exceptional points in lasers. , 2011, Physical review letters.

[29]  Stefano Longhi,et al.  Optical realization of relativistic non-Hermitian quantum mechanics. , 2010, Physical review letters.

[30]  Stefan Nolte,et al.  Supersymmetric mode converters , 2014, Nature Communications.

[31]  Li Ge,et al.  Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures , 2011, 1112.5167.

[32]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[33]  S. Longhi,et al.  Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited] , 2017 .

[34]  Hong-Gyu Park,et al.  Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains , 2016, Nature Communications.

[35]  T. Hughes,et al.  Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians , 2011, 1107.1064.

[36]  Yeshaiahu Fainman,et al.  Nonreciprocal Light Propagation in a Silicon Photonic Circuit , 2011, Science.

[37]  Xiang Zhang,et al.  Unidirectional light propagation at exceptional points. , 2013, Nature materials.

[38]  N. Moiseyev,et al.  On the observability and asymmetry of adiabatic state flips generated by exceptional points , 2011 .

[39]  U. Peschel,et al.  Observation of optical solitons in PT-symmetric lattices , 2015, Nature Communications.

[40]  Z. Q. Zhang,et al.  The emergence, coalescence and topological properties of multiple exceptional points and their experimental realization , 2015, 1509.06886.

[41]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[42]  Liang Feng,et al.  Robust Light State by Quantum Phase Transition in Non-Hermitian Optical Materials , 2015, Scientific Reports.

[43]  He-Shan Song,et al.  Parity-time-symmetry enhanced optomechanically-induced-transparency , 2016, Scientific Reports.

[44]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[45]  Y. Chong,et al.  Chiral exceptional points in metasurfaces , 2016 .

[46]  Henning Schomerus,et al.  Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. , 2015, Physical review letters.

[47]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[48]  G. Barton Introduction to Advanced Field Theory , 1963 .

[49]  C. Schneider,et al.  Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard , 2015, Nature.

[50]  D. Sounas,et al.  Time-Reversal Symmetry Bounds on the Electromagnetic Response of Asymmetric Structures. , 2017, Physical review letters.

[51]  Z. Musslimani,et al.  Theory of coupled optical PT-symmetric structures. , 2007, Optics letters.

[52]  Andrea Alù,et al.  Negative refraction and planar focusing based on parity-time symmetric metasurfaces. , 2014, Physical review letters.

[53]  Jan Wiersig,et al.  Sensors operating at exceptional points: General theory , 2016 .

[54]  Jiaguang Han,et al.  Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. , 2014, Physical review letters.

[55]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[56]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[57]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[58]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[59]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics , 2011 .

[60]  Axel Scherer,et al.  Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice , 2016, Nature Communications.

[61]  Andrea Alù,et al.  PT metamaterials via complex-coordinate transformation optics. , 2012, Physical review letters.

[62]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[63]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[64]  Andrea Alù,et al.  Nonlinearity-induced PT-symmetry without material gain , 2016 .

[65]  R. Fleury,et al.  Parity-Time Symmetry in Acoustics: Theory, Devices, and Potential Applications , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[67]  D. Brody Consistency of PT-symmetric quantum mechanics , 2015, 1508.02190.

[68]  Y. Ashida,et al.  Parity-time-symmetric quantum critical phenomena , 2016, Nature Communications.

[69]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[70]  Natalia M. Litchinitser,et al.  Orbital angular momentum microlaser , 2016, Science.

[71]  Jung Min Lee,et al.  Switching of Photonic Crystal Lasers by Graphene. , 2017, Nano letters.

[72]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[73]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[74]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[75]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[76]  Luyao Jiang,et al.  Topological energy transfer in an optomechanical system with exceptional points , 2016, Nature.

[77]  S. Longhi,et al.  Bloch oscillations in complex crystals with PT symmetry. , 2009, Physical review letters.

[78]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[79]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[80]  Matthias Heinrich,et al.  Single mode lasing in transversely multi-moded PT-symmetric microring resonators , 2016 .

[81]  Tsampikos Kottos,et al.  Optical physics: Broken symmetry makes light work , 2010 .

[82]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[83]  L. Ge Symmetry-protected zero-mode laser with a tunable spatial profile , 2016, 1610.09717.

[84]  Stefano Longhi,et al.  PT-symmetric microring laser-absorber. , 2014, Optics letters.

[85]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[86]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[87]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[88]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[89]  Hui Cao,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[90]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[91]  M. Berry,et al.  Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon , 2011 .

[92]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[93]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[94]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[95]  Yuan Wang,et al.  Demonstration of a large-scale optical exceptional point structure. , 2014, Optics express.

[96]  D. Christodoulides,et al.  Scattering in PT − and RT -symmetric multimode waveguides: Generalized conservation laws and spontaneous symmetry breaking beyond one dimension , 2015, 1510.07760.

[97]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[98]  Hui Cao,et al.  Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities , 2015 .

[99]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[100]  Hong Chen,et al.  Experimental demonstration of a coherent perfect absorber with PT phase transition. , 2014, Physical review letters.

[101]  X. Zou,et al.  Chiral symmetry breaking in a microring optical cavity by engineered dissipation , 2016, 1604.08678.

[102]  A. U. Hassan,et al.  Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion. , 2017, Physical review letters.

[103]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[104]  Li Ge,et al.  Parity-Time Symmetry in a Flat Band System , 2015, 1507.08986.