Extended Finite Element Method for Fretting Fatigue Crack Propagation

In this paper, the extended finite element method (X-FEM) is considered for the analysis of fretting fatigue problems. A two-dimensional implementation of the X-FEM is carried out within the finite element software ABAQUS™ by means of user subroutines, and crack propagation in fretting fatigue problems is investigated. On utilizing the non-linear contact capabilities of this code, the numerical technique is applied to a specimen-indenter model. The use of the X-FEM facilitates very accurate stress intensity factor computations on relatively coarse meshes, and furthermore, no remeshing is required for crack growth simulations. The implementation is applied to complete and incomplete contact fretting problems. A study of crack growth is conducted for several bulk loads applied to the specimen, and the influence of the initial crack angle is ascertained. The numerical simulations reveal the merits of applying the X-FEM to fretting fatigue problems.

[1]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[2]  Takashi Watanabe,et al.  Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics , 2003 .

[3]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[4]  T Kimura,et al.  Simplified method to determine contact stress distribution and stress intensity factors in fretting fatigue , 2003 .

[5]  H. Bueckner Field singularities and related integral representations , 1973 .

[6]  U. S. Fernando,et al.  INFLUENCE OF CONTACT LOADING ON FRETTING FATIGUE BEHAVIOUR , 1994 .

[7]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[8]  R. Shield,et al.  Conservation laws in elasticity of the J-integral type , 1977 .

[9]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[10]  David W. Hoeppner,et al.  Fretting Fatigue: Current Technology and Practices , 2000 .

[11]  M. Williams,et al.  Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .

[12]  Hans Albert Richard,et al.  Theoretical crack path prediction , 2005 .

[13]  David L. McDowell,et al.  Influence of Nonhomogeneous Material in Fretting Fatigue , 2003 .

[14]  Y. Mutoh,et al.  Observations and Analysis of Fretting Fatigue Crack Initiation and Propagation , 2003 .

[15]  D. Rooke,et al.  Stress intensity factors in fretting fatigue , 1979 .

[16]  J. Dolbow,et al.  A note on enrichment functions for modelling crack nucleation , 2003 .

[17]  D. Hills,et al.  On the mechanics of fretting fatigue , 1988 .

[18]  Anthony Gravouil,et al.  A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method , 2007 .

[19]  Yoichi Sumi,et al.  Computational crack path prediction , 1985 .

[20]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[21]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[22]  M. C. Dubourg,et al.  A theoretical model for the prediction of initial growth angles and sites of fretting fatigue cracks , 1997 .

[23]  S. Faanes,et al.  Inclined cracks in fretting fatigue , 1995 .

[24]  Michael Smith,et al.  ABAQUS/Standard User's Manual, Version 6.9 , 2009 .

[25]  J. Knott Mechanics of Fracture , 1983 .

[26]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[27]  Asher A. Rubinstein,et al.  Mechanics of the crack path formation , 1991 .

[28]  Subra Suresh,et al.  An Experimental Investigation of Fretting Fatigue with Spherical Contact in 7075-T6 Aluminum Alloy , 2000 .

[29]  C. Navarro,et al.  A procedure for estimating the total life in fretting fatigue , 2003 .

[30]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[31]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[32]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[33]  Tae-Yeon Kim,et al.  A mortared finite element method for frictional contact on arbitrary interfaces , 2006 .

[34]  T. Fett,et al.  Weight function for finite strip with double-edge notches , 1988 .

[35]  M. Dubourg,et al.  Crack Path Prediction Under Fretting Fatigue—A Theoretical and Experimental Approach , 1996 .